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Glossary

g0005 Linear predictor – A linear combination of

explanatory variables that is part of a regression

model or generalized linear mixed model.

g0010 Link function – A function applied to the conditional

expectation of the response variable before this is

equated to the linear predictor (in a generalized linear

model). Examples are the identity, log, and logit link

functions.

g0015 Random coefficient – Cluster-specific coefficient of

a covariate in a regression model for clustered data

that varies randomly between clusters.

g0020 Random intercept – Cluster-specific intercept in a

regression model for clustered data that varies

randomly between clusters.

s0005 Logistic Random-Intercept Model

p0005 To introduce the idea of generalized linear mixed models,
we consider the following example. The Program for
International Student Assessment (PISA) is an interna-
tional educational survey funded by the Organisation for
Economic Co-operation and Development (OECD) that
measures attainment in reading, mathematics, and science
among 15-year-old students. Using the United States
sample of PISA 2000, we estimate the relationship
between reading proficiency (Profij) of student i in school
j and the following covariates:

� Femij : indicator for student being female;
� SESij : international socioeconomic index (continuous),
grand-mean centered and divided by 20;

� HSij : indicator for highest education level of either
parent being high school;

� Collij : indicator for highest education level of either
parent being college; and

� Engij : indicator for test language (English) spoken at
home.

p0010 Profij is a binary variable (1 ¼ Yes, 0 ¼ No); therefore,
an appropriate level-1 model is a logistic regression
model. Specifically, the log of the odds that the student
is proficient versus not proficient is specified as a linear
function of the covariates,

log
PðProf ij ¼ 1Þ
PðProf ij ¼ 0Þ

� �
¼ �0j þ �1Femij þ �2SESijþ

�3HSij þ �4Collij þ �5Engij

(Here P(�) refers to the conditional probability, given b0j
and the covariates.) The school-specific intercept b0j
represents the log-odds of being proficient for students
in school j when all the covariates take the value zero, that
is for males with average Socioeconomic status (SES)
whose parents’ highest education level is less than high
school and who do not speak English at home. The regres-
sion coefficient of a covariate represents the increase
in log-odds per unit increase in the corresponding covari-
ate when the other covariates and b0j remain constant.
These coefficients are sometimes referred to as con-
ditional or school-specific effects because b0j is held
constant. Exponentiating the coefficients yields school-
specific odds ratios.

p0015The level-2 model for school j is

�0j ¼ �00 þ �01SES�j þ �0j

where SES�j is the mean SES for school j, and z0j is a
school-specific random intercept assumed to be indepen-
dent of the covariates and independent across schools
with z0j � N(0, c).

p0020Substituting the school-level model into the student-
level model and writing �ij for the log-odds, we obtain the
so-called reduced form

�ij ¼ �00 þ �01SES�j þ �1Femij þ �2SESij

þ �3HSij þ �4Collij þ �5Engij þ �0j

a logistic regression model with both student-level (or
level 1) and school-level (or level 2) covariates and both
a fixed intercept g00 and a random intercept z0j.

p0025Maximum likelihood estimates for the logistic random
intercept model are presented in Table 1. Higher school
mean SES, being female, higher individual SES, having at
least one parent with a college education, and speaking
English at home are all associated with a significantly
greater odds of reading proficiency at the 5% level. For
an indicator variable, the odds ratio represents the ratio of
the odds for two groups, holding constant the other cov-
ariates. For instance, the estimated odds ratio of 1.9 for
Engijmeans that students who speak English at home have
1.9 times the odds of being proficient in comparison to
students who do not speak English at home for a given
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school mean SES, gender, parents’ education, and random
intercept z0j .

p0030 For a continuous covariate, the odds ratio can be inter-
preted as the effect of increasing the covariate by a unit;
therefore, it is important to understand the scale of the
covariate. Individual SES has a standard deviation of 0.88
and school mean SES has a standard deviation of 0.45.
Each unit increase in school mean SES is associated with a
quadrupling in the estimated odds of being proficient,
controlling for individual SES, the other covariates,
and the random intercept. Such an additional effect of
the school mean of a variable after controlling for the
individual-level variable is sometimes referred to as a
contextual effect. Here it could be due to the effect of
the peers’ SES, as well as any omitted variables that are
correlated with school SES, such as school resources,
parent involvement, and teacher qualifications.

p0035 If we had omitted school mean SES from the model,
the estimated coefficient of individual SES would have
been greater (0.41) due to absorbing some of the contex-
tual effect. Using econometric terminology, we would
have had an endogeneity problem because the random
intercept, representing the combined effects of all omitted
covariates at the cluster level (including school mean
SES), would be correlated with individual SES. Another
way of thinking about the problem is by remembering that
the random intercept is assumed to be uncorrelated with
the covariates; therefore, the effects of included covariates
are not controlled for any possible school-level con-
founders. Such control can be achieved for an individual
level-1 covariate by mean centering it and/or including
its cluster mean as an additional covariate. Alternatively,
we can eliminate cluster-level confounding for all level-1
covariates by specifying fixed effects for schools. In linear
models, this could be accomplished by including indicator
variables for schools. In logistic regression models, an
appropriate approach is conditional maximum likelihood
estimation. Using this method gives similar estimated
coefficients except for a lower estimate of 0.46 for Engij ,
suggesting that there might be an endogeneity problem or
contextual effect for this variable.

p0040It is useful to visualize the magnitude of the effects of
some variables on the probability of reading proficiency,
holding constant other variables. For instance, we can
consider boys whose parents’ highest level of education
is high school and who have SES equal to the overall
mean, and obtain predicted probabilities as a function of
school mean SES and the indicator variable for speaking
English at home. A graph of these predicted probabilities
(for the range of school mean SES in the data) is shown in
Figure 1, where the dashed curves are for students who
speak English at home and the solid curves are for stu-
dents who do not speak English at home. For each line
pattern, the curve that is closer to 0.5 represents the
population averaged or marginal probability, after inte-
grating or averaging out the random intercept, whereas
the other curve represents the conditional or school-
specific probability, with the random intercept set to 0,
which is also the median probability.

p0045We can see that school mean SES has a large effect,
with predicted probabilities differing by more than 0.4
between the lowest and highest SES schools. Speaking
English at home increases the probability by about 0.1
for average and above average SES schools. In the very
low SES schools, boys with average SES, but whose
parents’ highest level of education is high school, have
very low probabilities of reading proficiency.

s0010Random Coefficient Models

p0050The random intercept model for the log-odds considered
in the previous section had the form

�ij ¼ �0j þ �1x1ij þ . . .þ �PxPij

t0005 Table 1 Maximum likelihood estimates for logistic random

intercept model

Parameter Est (SE) OR (95% CI)

g00 �2.02 (0.29)

�01½SES�j � 1.38 (0.18) 4.0 (2.8,5.7)

b1 [Femij] 0.56 (0.10) 1.7 (1.4,2.1)

b2 [SESij] 0.29 (0.07) 1.3 (1.2,1.5)
b3 [HSij] 0.39 (0.25) 1.5 (0.9,2.4)

b4 [Collij] 0.71 (0.23) 2.0 (1.2,3.3)

b5 [Engij] 0.62 (0.29) 1.9 (1.2,2.9)
c 0.27 (0.09)
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f0005Figure 1 Predicted probability of reading proficiency as a

function of school mean SES for students who do (dashed

curves) and do not (solid curves) speak English at home (with
Femij¼ 0, SESij¼ 0, HSij¼ 1, and Collij¼ 0). For each line pattern,

the curves closer to 0.5 are marginal probabilities and the other

curves, median probabilities.
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where b0j is a school-specific random intercept and
xpij ðp ¼ 1; . . . ; PÞ are level-1 covariates with fixed regres-
sion coefficients bp .

p0055 In random coefficient models, not only is the intercept
school specific, but the effects of at least some level-1
covariates also vary between schools. The simplest exam-
ple is a model with a random intercept and a random
slope for a covariate x1ij . The level-1 model for the log-
odds then has the form

�ij ¼ �0j þ �1j x1ij þ �2x2ij þ . . .þ �PxPij

where x1ij has a school-specific regression coefficient or
slope b1j, whereas the other level-1 covariates have fixed
regression coefficients �2; . . . ; �P .

p0060 The school-specific intercept and slope each, has its
own level-2 model of the form

�0j ¼ �00 þ �01!1j þ . . . �0Q !Q j þ �0j

�1j ¼ �10 þ �11!1j þ . . . �1Q !Q j þ �1j

where !1j ; . . . ; !Q j are school-level covariates. The
school-specific random intercept z0j and random slope
z1j are typically assumed to have a bivariate normal distri-
bution with zero means for given covariate values.

p0065 Substituting the level-2 models into the level-1 model
produces a reduced form with cross-level interaction
terms. For instance, the model for b1j includes the term
g11 o1j , and, since b1j multiplies x1ij , we obtain the cross-
level interaction g11 o1jx1ij . Random coefficient models
could, of course, also include random effects of more than
one covariate varying at level-1.

s0015 Different Response Types

p0070 All generalized linear mixed models have a so-called
linear predictor �ij of the form shown in the previous
section. However, the relationship between the linear
predictor and the observed response yij can be specified
in a number of different ways depending on the type of
response variable. First, a conditional distribution for yij is
specified as a function of the conditional expectation mij ,
given the covariates and random effects. Second, a link
function g (�) is specified so that

gð�ij Þ ¼ �ij

p0075 The conditional response distribution is from the
exponential family and is characterized by the conditional
expectation mij as well as a dispersion parameter f that
affects the conditional variance

Varðyij j�ij Þ ¼ �V ð�ij Þ

where the variance function V(mij) is determined by the
chosen distribution.

p0080We briefly discuss the most common generalized linear
mixed models for continuous responses, binary responses,
and counts.

s0020Continuous Responses

p0085In the continuous case, a linear mixed model is typically
assumed, in which the conditional response distribution is
normal,

yij j�ij � Nð�ij ; �2eÞ

and the link function is the identity link

�ij ¼ �ij

The variance function is V(mij) ¼ 1 and the dispersion
parameter is f ¼ s2.

s0025Binary Responses

p0090Binary responses are assumed to be independently Ber-
noulli distributed as

yij j _�ij � Bernoullið�ij Þ

for given mij . Here the conditional expectation mij is also
the conditional probability P(yij ¼ 1) for given values of
the covariates and random effects. The most common link
function is the logit link

�ij ¼ logitð�ij Þ � log
�ij

1� �ij

� �
¼ log

Pð yij ¼ 1Þ
Pð yij ¼ 0Þ

� �

which can be interpreted as the log of the odds that yij is 1.
An alternative link function is the probit linkF�1 (mij), the
inverse standard normal cumulative distribution function.
The variance function in either case is

V ð�ij Þ ¼ �ij ð1� �ij Þ

and the dispersion parameter is equal to 1.
p0095If there are several (nij > 1) independent binary

responses per unit ij, the conditional distribution of the
number of responses that are 1 is binomial with probabil-
ity of success mij and number of trials nij. In this case, the
variance function is nij mij (1 � mij) and f ¼ 1. However,
if nij > 1, it is possible that the empirical variances are
larger or smaller than the model-implied variances. Such
overdispersion or underdisperson can be accommodated
by estimating f as a free parameter in a so-called quasi-
likelihood approach. In likelihood or Bayesian methods,
overdispersion is instead induced by including additional
random effects varying over level-1 units. Note that
there is no such thing as overdispersion or underdisper-
sion if nij ¼ 1, although researchers sometimes attempt to
model it.

Generalized Linear Mixed Models 3

EDUC: 01332



E
L
S
E
V
IE
R
S
E
C
O
N
D
P
R
O
O
F

s0030 Latent response formulation

p0100 In econometrics and psychometrics, models for binary
responses are often specified by imaging an underlying
or latent continuous response y�ij such that the observed
response yij is 1 if the latent response exceeds 0 and yij is 0
otherwise. An obvious interpretation of y�ij in the profi-
ciency example is as a continuous measure of reading
achievement that must exceed a threshold for the student
to be proficient. A linear mixed model is then specified for
the latent response

y�ij ¼ �ij þ eij

p0105 If a logistic distribution is assumed for eij, we obtain a
logistic regression model, and, if a standard normal distri-
bution is assumed, we obtain a probit regression model.

p0110 A simple latent response model with �ij ¼ b0 þ b1xij is
shown in the lower portion of Figure 2. The density
curves represent the distribution of y�ij for different values
of xij, with means falling on the upward sloping regression
line. The threshold 0 is indicated by the dashed horizontal
line, and the areas under the density curves exceeding this
threshold are shaded. These probabilities that y�ij is greater
than 0 represent the corresponding probabilities that
yij ¼ 1. The upper portion of the figure is a graph of
these probabilities as a function of xij, and we can recog-
nize the familiar logistic curve. The logistic regression
model can thus either be specified through a logit link or
using a latent response formulation.

p0115 The latent response formulation can be useful for
interpreting the random part of the model. For a random
intercept model, we can express the within-cluster depen-
dence as the residual intraclass correlation among the
latent responses, given the covariates

corðy�ij � y�ij 0 j�ij Þ ¼
 

 þ Varðeij Þ
where Var(eij) is p

2/3 in logistic models and 1 in probit
models. For the estimates in Table 1, the residual

intraclass correlation of the latent responses is estimated
as 0.08. Hence, 8% of the residual variance in underlying
reading achievement is due to schools. Although this intra-
class correlation relies on the concept of a latent response,
it is preferable to the correlation among the observed
responses which depends on the covariate values.

s0035Counts

p0120Sometimes a response variable is a count of some event
such as the number of days a student is absent from school
in a year or the number of times a teacher shouts in an
hour. The conditional response distribution is typically
specified as Poisson,

yij j�ij � Poissonð�ij Þ
and a log link is used

logð�ij Þ ¼ �ij

The log link ensures that the expected count is nonnega-
tive and produces a multiplicative model for the expected
count.

p0125The variance function is V(mij) ¼ mij and f ¼ 1. Over-
dispersion or underdisperson can be accommodated
by estimating f as a free parameter, and overdispersion
can be modeled by including additional random effects
varying over level-1 units. The Poisson model cannot be
specified through a latent response formulation.

s0040Other Response Types

p0130Ordinal responses include Likert scales for agreement
with attitude statements (e.g., disagree, neither agree nor
disagree, and agree) and reported frequencies of doing
something such as helping children with homework (e.g.,
daily, several times per week, occasionally, and never). The
most common models are so-called cumulative logit or
probit models, and these can be specified as logit or probit
models for the probabilities of exceeding each of the
ordered categories (except the last). A parallel regression
assumption is usually made by allowing only the intercept
to take different values for different categories. The mod-
els can alternatively be specified using a latent response
formulation with several, freely estimated thresholds.

p0135Discrete time durations are often of interest in educa-
tion. Examples include number of semesters to dropout
from college, age at which children first enter preschool,
and number of years teachers teach at a school. A popular
model for analyzing discrete time durations is the contin-
uation ratio logit model. After expanding the data appro-
priately, this model can be estimated using logistic
regression for binary responses.

p0140Unordered categorical data arise when people choose
among different alternatives, such as community college,

0.0
xij

0.5

P(
yi

j=
1/

xi
j)

y*ij

f0010 Figure 2 Illustration of the relationship between latent-
response model and probability of observed response being 1.

(Source: Rabe-Hesketh and Skrondal, 2008).
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4-year college, or no higher education after graduation
from high school. Multinomial logit models are typically
used for such data.

s0045 Conditional and Marginal Relationships

p0145 The regression coefficients in generalized linear mixed
models represent conditional effects in the sense that they
express comparisons holding the cluster-specific random
effects (and covariates) constant. For this reason, conditional
effects are sometimes referred to as cluster-specific effects.
In contrast, marginal effects can be obtained by averaging
the conditional expectation mij over the random effects
distribution. Marginal effects express comparisons of entire
sub-population strata defined by covariate values and are
sometimes referred to as population-averaged effects.

p0150 In linear mixed models (identity link), the regression
coefficents can be interpreted as either conditional or
marginal effects. However, conditional and marginal
effects differ for most other link functions. This can easily
be seen for a random intercept logistic regression model
with a single covariate in Figure 3. The cluster-specific,
conditional relationships are shown as dotted curves with
horizontal shifts due to different values of the random
intercept. The population-averaged, marginal curve is
obtained by averaging the conditional curves at each
value of xij . We see that the marginal curve resembles a
logistic curve with a smaller regression coefficient. Hence,
the marginal effect of xij is smaller than the conditional
effect.

p0155 The difference between conditional and marginal rela-
tionships is also visible in Figure 1, but it is much less
pronounced due to the relatively small estimated random
intercept variance.

s0050Estimation and Software

p0160The model parameters to be estimated in most generalized
linear mixed models are the fixed regression coefficients
and the covariance matrix of the random effects (the vari-
ancec for a random-intercept model). Themost commonly
used estimation methods are maximum likelihood, pena-
lized quasi-likelihood (PQL-1), and Markov chain Monte
Carlo (MCMC).

p0165Maximum likelihood estimation is not straightforward
for generalized linear mixed models because the likelihood
involves integrals that cannot be solved analytically. Many
software packages therefore use numerical integration, typ-
ically adaptive or ordinary Gauss–Hermite quadrature.
Examples include the Stata programs xtlogit, xtpoisson,
xtmelogit, xtmepoisson, and gllamm; the SAS procedure
NLMIXED; and the R-program Imer. The estimates in
Table 1 and the predictions for Figure 1 were obtained
using gllamm (see multimedia).

p0170Numerical integration is time consuming, particularly
if the model includes several random effects. Approximate
methods have therefore been suggested, including PQL-1
which is implemented in the SAS procedure GLIMMIX,
the S-PLUS or R function glmmPQL, and the stand-
alone programs HLM and MLwiN. Unfortunately, these
methods sometimes produce biased estimates, in particu-
lar for binary responses, small cluster sizes and large
intraclass correlations of the latent responses. More accu-
rate approximations have therefore also been implemen-
ted (PQL-2 in MLwiN and Laplace6 in HLM). Software
implementing MCMC for Bayesian estimation includes
the general program BUGS or WINBUGS and the pro-
gram MLwiN which is custom made for generalized lin-
ear mixed models.

s0055Assigning Values to Random Effects

p0175It is sometimes required to assign values to the random
effects for individual clusters. For instance, random inter-
cepts for schools or teachers in models for student out-
comes can sometimes be viewed as measures of
effectiveness since they represent the school- or teacher-
specific value added taking into account after having
taken observed covariates such as the prior achievement
of students at intake.

p0180If MCMC is used for estimation, there is no real
distinction between parameters and random effects, and
estimates of the latter are obtained in a straightforward
manner. If maximum likelihood or approximate methods
are used for estimation, the parameters (typically the
fixed regression coefficients and the covariance matrix
of the random effects) are treated as known and replaced
by their estimates for the purpose of assigning values to
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f0015 Figure 3 Conditional relationships (dotted curves) and
marginal relationship (solid curve) for a random intercept logistic

model. From Skrondal, A. and Rabe-Hesketh, S. (2004).

Generalized Latest Variable Modeling: Multilevel, Longitudinal,

Structural Equation Models, Boca Raton, FL: Chapman and Hall/
CRC.
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the random effects. The random effects are then either
estimated by maximum likelihood or predicted using
empirical Bayes.

p0185 Viewing the random effects as the only unknown para-
meters, they can be estimated by maximizing the joint
probability distribution (or likelihood) of the responses,
given the random effects and covariates, with respect to
the random effects. This maximum likelihood estimation
is performed independently for each cluster. In linear
mixed models, such estimates are also known as ordinary
least squares (OLS) estimates.

p0190 In empirical Bayes prediction of the random effects, we
exploit the information that we have about the random
effects before seeing the data for a cluster, namely the
estimated random effects distribution, known as the prior
distribution. The posterior distribution of the random
effects for a cluster is proportional to the product of the
prior distribution and the likelihood for the cluster. The
mean of the posterior distribution is called the empirical
Bayes predictor. In linear mixed models, these predictions
are also known as best linear unbiased predictors (BLUPs).

p0195 The empirical Bayes predictions are shrunken toward
zero compared with the maximum likelihood estimates.
This shrinkage occurs because the prior distribution has
its mean at zero. Shrinkage is negligible when the likeli-
hood dominates the prior, for instance due to a large cluster
size, but can be pronounced for small cluster sizes. Empiri-
cal Bayes predictors have lower mean squared prediction
errors than maximum likelihood estimators and are, there-
fore, usually preferred.

p0200 There are generally no closed-form expressions for the
empirical Bayes predictor except for linear mixed models.
For other generalized linear mixedmodels, empirical Bayes
predictions can be obtained by numerical integration.

s0060 Some Extensions

p0205 We have considered two-level models in this article which
are applicable for typical educational datasets where stu-
dents are nested in schools or where repeated observa-
tions on students over time are nested in students. There
are often further levels of nesting. For instance, we may
have repeated observations nested within students who
are nested in schools. Alternatively, students may be
nested in classrooms nested in schools, or schools may
be nested in school districts or countries. In these cases,
we can include random effects at each of the nested levels.
More complex designs require crossed random effects.
For instance, in longitudinal studies, students may be in
middle school in the first two waves and, subsequently,
high school in the next two waves. Middle schools are
typically crossed with high schools in the sense that all
students from a given middle school do not attend the
same high school (or vice versa).

p0210Estimation of models with nested random effects is not
muchmore complex than estimation of standard generalized
linear mixed models. In contrast, estimation of models with
crossed random effects remains a challenge, except in linear
mixed models.

p0215The random part of the linear predictor in generalized
linear mixed models is quite restrictive because each
random effect zpj merely multiplies an observed variable
xpij in the reduced form. Generalized linear latent and
mixed models (GLLAMMs) extend generalized linear
mixed models by allowing the random effects to be multi-
plied by different parameters for different responses.
Furthermore, the random effects can be regressed on
observed covariates and other random effects (at the
same or higher hierarchical levels). This is useful for
incorporating measurement models, such as IRTmodels,
within generalized linear mixed models.

See also: Categorical data analysis (01311); Empirical
Bayes Methods (01325); Generalized Linear Models
(01331); Growth modeling (01335); Hierarchical Linear
Model (01336); Value-added models (01374).
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Abstract:
Generalized linear mixed models are used to model response variables of different types, including continuous and
binary responses and counts, when the data are clustered. Clustered data are common in education, canonical
examples being students nested in schools and longitudinal responses nested in students. This article introduces the
models through an example with a binary response variable and discusses conditional and marginal effects, estimation
and software, and assignment of values to random effects.

Generalized linear mixed models extend linear mixed models, or hierarchical linear models, to accommodate
noncontinuous responses, such as binary responses or counts. Such models are useful when the data are clustered in
some way, a canonical example in education being students nested in schools. Another important example is
longitudinal data where repeated observations of the same students are nested within students. Another term for
generalized linear mixed models is hierarchical or multilevel generalized linear models. The terms random coeffi-
cient models or random effects models are also often used for either linear or generalized linear mixed models.

We start by fitting a particular kind of generalized linear mixed model, a logistic random intercept model, to data
on reading proficiency of students nested in schools. We then discuss random coefficient models and models for
different response types, conditional and marginal relationships, estimation and software, and assignment of values to
random effects. We close by briefly considering some useful extensions to the models discussed here.

Keywords: Adaptive quadrature; Conditional effect; Empirical Bayes; Generalized linear mixed model; Gllamm;
Hierarchical generalized linear model; Logistic regression; Logit link; Marginal effect; Multilevel generalized linear
model; Poisson regression; Probit link; Random coefficients; Random effects
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