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1.02.1 Introduction

The study of the Earth’s free oscillations is funda-

mental to seismology, as it is a key part of the theory

of the Earth’s dynamic response to external or inter-

nal forces. Essentially, the same theory is applicable

to phenomena as diverse as postseismic relaxation,

analysis of seismic surface waves and body waves.

The study of free oscillations per se is concerned

with analyzing and extracting information at very

long periods (�3000–200 s period) since in this

range of periods the intrinsic standing wave modes

of oscillation are evident in seismic spectra. Such

spectra contain important information about the

large-scale structure of the Earth. For example, the

strongest evidence that the inner core is solid

(Dziewonski and Gilbert, 1971) and anisotropic

(Woodhouse et al., 1986; Tromp, 1993; Romanowicz

and Breger, 2000) comes from the study of free oscil-

lations. Free oscillations provide essential constraints

on both the spherically symmetric ‘average’ Earth,

and also on lateral variations in Earth structure due

to heterogeneity in temperature, composition, and

anisotropy. Modal data are particularly valuable in

this regard because, unlike other kinds of seismic

data, modal observables depend upon broad averages

of the Earth’s structural parameters, and are not

nearly so affected by limitations of data coverage

due to the uneven distribution of seismic events and

stations. There is an enormous wealth of information

yet to be extracted from long period spectra; one has

only to examine almost any portion of a seismic

spectrum in detail to realize that current models

often do not come close to providing adequate pre-

dictions. It is only from such very long period data

that it may be possible to obtain direct information on

the three-dimensional distribution of density. Even

very large scale information on lateral variations in

density has the potential to bring unique information

to the study of convection and thermal and composi-

tional evolution.
Very long period spectra are also an essential

element in the study of earthquakes, as it is only by

using data at the longest periods that it is possible to

determine the overall moment of very large events.

For example, estimates of the moment of the great

Sumatra earthquake based on mantle waves, even at

periods of several hundred seconds, significantly

underestimate the true moment, as the length and

duration of the rupture make it possible to gauge the

true, integrated moment only by using data at the

longest seismic periods (e.g. Park et al., 2005).
Figure 1 shows an example of data and theoretical

amplitude spectra computed for the spherically sym-

metric PREM model (Dziewonski and Anderson,

1981). Modes appear as distinct peaks in the fre-

quency domain. For higher frequencies, the modes

are more closely spaced and begin to overlap. The

theoretical peaks appear at frequencies very close to

the observed peaks. However, the observed peaks are

distorted in shape and amplitude due to three-

dimensional effects. For example, mode 1S4 is split
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into two peaks in the data spectrum, which is not seen
in the theoretical spectrum. Not shown here, but

equally important in studying both Earth structure
and earthquakes, is the ‘phase spectrum’. Examples

illustrating this are shown in later sections.
Normal mode studies represent the quest to reveal

and understand the Earth’s intrinsic vibrational spec-
trum. However, this is a difficult quest, because it is

only at the very longest periods (�500 s, say) that
there is the possibility of obtaining data of sufficient

duration to make it possible to achieve the necessary
spectral resolution. Essentially, the modes attenuate

before the many cycles necessary to establish a stand-
ing wave pattern have elapsed. Thus, in many
observational studies, over a wide range of frequen-

cies, the normal mode representation has the role,
primarily, of providing a method for the calculation

of theoretical seismograms. Although observed spec-
tra contain spectral peaks, the peaks are broadened

by the effects of attenuation in a path-dependent
way. Thus, rather than making direct measurements

on observed spectra, the analysis needs to be based on
comparisons between data and synthetic spectra, in

order to derive models able to give improved agree-
ment between data and synthetics.

The use of normal mode theory as a method of
synthesis extends well beyond the realm normally
thought of as normal mode studies. For example, it

has become commonplace to calculate global body
wave theoretical seismograms by mode summation in

a spherical model, to frequencies higher than
100 mHz (10 s period). Typically, such calculations

can be done in seconds on an ordinary workstation,
the time, of course, depending strongly upon the

upper limit in frequency and on the number of sam-
ples in the time series. The advantage of the method

is that all seismic phases are automatically included,
with realistic time and amplitude relationships.
Although the technique is limited (probably for the
foreseeable future) to spherically symmetric models,
the comparison of such synthetics with data provides
a valuable tool for understanding the nature and
potential of the observations and for making mea-
surements such as differences in timing between data
and synthetics, for use in tomography. Thus, the
period range of applications of the normal mode
representation extends from several thousand sec-
onds to �5 s. In between these ends of the spectrum
is an enormous range of applications: studies of
modes per se, surface wave studies, analysis of over-
tones, and long period body waves, each having
relevance to areas such as source parameter estima-
tion and tomography. Figure 2 shows an example of
synthetic and data traces, illustrating this.

There are a number of excellent sources of infor-
mation on normal modes theory and applications.
The comprehensive monograph by Dahlen and
Tromp (1998) provides in-depth coverage of the
material and an extensive bibliography. An earlier
monograph by Lapwood and Usami (1981) contains
much interesting and useful information, treated from
a fundamental point of view, as well as historical
material about early theoretical work and early obser-
vations. A review by Takeuchi and Saito (1972) is a
good source for the ordinary differential equations for
spherical Earth models and methods of solution.
Other reviews are by Gilbert (1980), Dziewonski
and Woodhouse (1983), and Woodhouse (1996). A
review of normal mode observations can be found in
Chapter 1.03. Because of this extensive literature we
tend in this chapter to expand on some topics that
have not found their way into earlier reviews but are
nevertheless of fundamental interest and utility.

1.02.2 Hamilton’s Principle and
the Equations of Motion

To a good approximation, except in the vicinity of an
earthquake or explosion, seismic displacements are
governed by the equations of elasticity. At long per-
iods self-gravitation also plays an important role.
Here we show how the equations of motion arise
from Hamilton’s principle.

Consider a material which is initially in equili-
brium under self-gravitation. Each particle of the
material is labeled by Cartesian coordinates xi

(i¼ 1, 2, 3), representing its initial position. The
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Figure 1 Data (solid line) and PREM synthetic spectrum

(dashed line) computed using normal mode summation, for

the vertical component recording at station ANMO following
the great Sumatra event of 26 December 2004.
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material undergoes time-dependent deformation in

which the particle initially at xi moves to ri¼ ri(x, t)

where t is time. A ‘hyperelastic’ material is defined as

one in which there exists an internal energy density

function which is a function of the Green strain tensor

eij ¼
1

2
rk;i rk;j – �ij

� �
½1�

where rk;i X qrk=qxi ; �ij is the Krönecker delta; sum-
mation over repeated indices is assumed. Thus, we
introduce the internal elastic energy function, per
unit mass, E(x, e, s), where s is specific entropy. We
shall be concerned only with isentropic deformations,
and can henceforth omit the dependence on s. Note
that E is represented as a function of the coordinates
xi which label a specific material particle. E(x, e) is
regarded as a given function characterizing the elastic
properties of the material. This form of the internal
energy function, which forms the basis of finite the-
ories of elasticity, as well as the theory of linear

elasticity which we need here, arises from the very
general consideration that elastic internal energy
should not change as a result of rigid rotations of
the material.

The gravitational field is characterized by a
potential field �(r), which satisfies Poisson’s equation

q2�

qrkqrk

¼ 4�G�ðrÞ ½2�

where � is the density. We state this equation in
terms of the coordinates rk, as it represents an equa-
tion valid in the current configuration of the material.

The Lagrangian governing motion of the elastic-
gravitational system (total kinetic energy minus total

potential energy) is

L ¼
Z Z

1

2
� _r k _r k – �E x; eð Þ – 1

2
��

� �
d3r dt ½3�

where ‘overdot’ represents the material time deriva-
tive (i.e., the derivative with respect to t at constant x).
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Figure 2 Data and synthetic for a vertical component record at station HRV following the recent event in Hawaii on 15

October 2006. The epicentral distance is 73�. For the calculation of the synthetic seismogram the Harvard/Lamont quick-CMT

centroid location and moment tensor parameters were used (G. Ekström, www.globalcmt.org).
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The three terms of the integrand represent the kinetic
energy, (minus) the elastic energy, and (minus) the
gravitational energy, respectively, making use of the
fact that the gravitational energy released by assem-
bling a body from material dispersed at infinity is

–
R

1
2 �� d3r . The integral in [3] is over the volume

occupied by the Earth, which is taken to consist of a
number of subregions with internal interfaces and an
external free surface. Hamilton’s principle requires
that L be stationary with respect to variations �ri(x, t),
subject to the constraint that � is determined by [2],
and also to the requirement of mass conservation:

�d3r ¼ �0d3x ½4�

where �0 ¼ �0ðxÞ is the initial density, that is,

� ¼ �0=J ½5�

where J is the Jacobian,

J ¼ qðr1; r2; r3Þ
qðx1; x2; x3Þ

½6�

The constraint [2] can be incorporated into the
variational principle by introducing a field � which

acts as a Lagrange multiplier (e.g., Seliger and

Whitham, 1968):

L9 ¼
Z Z

1

2
� _r k _r k – �Eðx; eÞ – 1

2
��

�

þ � q2�

qrkqrk

– 4�G�

� ��
d3r dt ½7�

the term involving � vanishes by [2], and therefore,
L9 is stationary with respect to variations in �. If we
also require that L9 be stationary under variations ��,
we obtain the Euler–Lagrange equation for �:

q2�

qrkqrk

¼ 1

2
� ½8�

which can be satisfied by setting �¼�/8�G. Thus,
we obtain

L9¼
Z Z

1

2
� _r k _r k –�Eðx;eÞ–��– 1

8�G

q�
qrk

q�
qrk

� �
d3r dt ½9�

Changing the spatial integration variables, making
use of [4], we may also write

L9 ¼
Z Z �

1

2
�0 _r k _r k – �

0Eðx; eÞ – �0�

–
1

8�G
�9;k�9;k

�
d3x dt ½10�

where �9 represents the gravitational potential at the
fixed coordinate point x. Notice that the first three

terms of the integrand have been transformed by
regarding r to be a function of x (at each fixed t)
through the function r(x, t) which defines the defor-
mation. However, the fourth term (which ‘could’ be
treated in the same way) has been transformed by
renaming the dummy integration variables ri to xi.
Hence, the need to introduce �9 since � represents
�(r(x, t)), which is different from �(x, t). The require-
ment that L9 be stationary with respect to variations
�r(x, t), ��(r, t) provides a very succinct, complete
statement of the elasto-gravitational dynamical
equations.

To obtain the partial differential equations for
infinitesimal deformations, we approximate L9 in
the case that rk ¼ xk þ �ukðx; tÞ and �9 ¼ �0þ
��1ðx; tÞ, where � is a small parameter. We seek to
express the Lagrangian L9 in terms of the fields ui, �

1,
to second order in �. We have, to second order in �,

� ¼ �0 þ �ui�
0
;i þ

1

2
�2ui uj�

0
;ij þ ��1 þ �2ui�

1
;i ½11�

We expand �0E[x, e] to second order in strain

�0ðxÞEðx; eÞ ¼ a þ t 0
ij eij þ

1

2
cijkl eij ekl ½12�

As a result of their definitions, as first and second
derivatives of �0(x)E(x, e) with respect to strain, at
zero strain, tij

0 and cijkl possess the symmetries:

t 0
ij ¼ t 0

ji ½13�

cijkl ¼ cjikl ¼ cijlk ¼ cklij ½14�

We use the notation t0ij since these expansion coeffi-
cients represent the initial stress field. The strain
tensor [1] is

eij ¼
1

2
� ui;j þ uj ;i

� �
þ 1

2
�2uk;i uk;j ½15�

Thus, the second-order expansion of L9 becomes

L9 ¼
Z Z �

– a – �0�
0 –

1

8�G
�0
;i�

0
;i

– � t 0
ij ui;j þ �0ui�

0
;i þ �0�

1 þ 1

4�G
�0
;i�

1
;i

� �

þ 1

2
�2

�
�0 _uk _uk – �jilkui;j uk;l – �

0ui uj�
0
;ij

– 2�0uj�
1
;j –

1

4�G
�1
;i�

1
;i

	�
d3xdt ½16�

where we have introduced

�jilk X �ikt 0
jl þ cijkl ½17�
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The Euler–Lagrange equations arising from the
requirement that L9 be stationary with respect to
variations �u, ��1 must hold for each power of �.
Thus, the first-order terms give the following equa-
tions, which represent the requirement that the initial
configuration be in equilibrium under self-gravitation:

t 0
ij ;j ¼ �0�0

;i ½18�

�0
;ii ¼ 4�G�0 ½19�

The terms in L9 that are independent of � do not
contribute to the variation, and thus can be omitted.
When [18], [19] are satified, there remain only the
second-order terms:

L0 ¼
Z Z

1

2

�
�0 _uk _uk –�jilkui;j uk;l – �

0uiuj�
0
;ij

– 2�0ui�
1
;i –

1

4�G
�1
;i�

1
;i

	
d 3x dt ½20�

In [20] we omit the factor �2, absorbing the small
parameter into the definitions of the fields u, �1.

The Euler–Lagrange equations corresponding to
variations �u, ��1 give the equations of motion

�0ðüi þ �1
;i þ �0

;ij uj Þ ¼ ð�jilkuk;l Þ;j ½21�

�1
;jj ¼ – 4�Gð�0uiÞ;i ½22�

The variational principle also leads to certain
natural boundary conditions at the free surface and

at internal boundaries in the case that r(x, t) is

required to be continuous at such boundaries – so-

called ‘welded’ boundaries. These are as given below.

We also wish to include the case that the model

contains fluid regions, having free-slip, boundary

conditions at their interfaces with solid regions –

so-called ‘frictionless’ boundaries. The correct treat-

ment of such boundaries introduces complications

that, in the interests of giving a concise account, we

do not analyze in detail here. Woodhouse and

Dahlen (1978) show that it is necessary to include

additional terms in the Lagrangian to account for the

additional degrees of freedom corresponding to slip

(i.e., discontinuous ui) at such boundaries. The stress

boundary conditions are most conveniently stated in

terms of the vector ti defined on the boundary by

ti ¼�jilkuk;l nj – ni �
0uk

� �
;k

þ �0uk;i nk with �0 ¼ t 0
jknj nk ½23�

where ni is the Unit normal to the boundary, and
where the semicolon notation, for example, uk;i, is
used to indicate differentiation in the surface:
uk;i ¼ uk;i – ninj uk;j . The complete set of boundary

conditions is

Welded: t 0
ij nj

h iþ

–
¼ 0; ui½ �þ–¼ 0; ti½ �þ–¼ 0;

Frictionless: t 0
ij nj

h iþ

–
¼ 0; t 0

ij nj ¼ ni�
0; uknk½ �þ–¼ 0; ti½ �þ–¼ 0; ti ¼ ni tknk

Free: t 0
ij nj ¼ 0; ti ¼ 0;

All: �0½ �þ–¼ 0; �0
;i

h iþ

–
¼ 0; �1½ �þ–¼ 0; �1

i þ 4�G�0ui


 �þ
–
¼ 0;

Infinity: �0 ! 0; �1 ! 0;

½24�

where [ ]�
þ represents the discontinutity of the

enclosed quantity accross the boundary.
In the presence of an applied force distribution

fi¼ fi (x, t), per unit volume, the equation of motion

[21] becomes

�0 üi þ �1
;i þ �0

;ij uj

� 

– �jilkuk;l

� �
;j
¼ fi ½25�

Taking the Fourier transform in time, we shall also
write

�0 –!2ui þ �1
;i þ �0

;ij uj

� 

– �jilkuk;l

� �
;j
¼ fi ½26�

where ! is the frequency. We shall employ the
transform pair:

ui x; !ð Þ ¼
Z 1

–1
ui x; tð Þe – i!t dt

ui x; tð Þ ¼ 1

2�

Z 1

–1
ui x; !ð Þei!t dt

½27�

Here, and in subsequent equations we rely on the
context to distinguish between time-domain and fre-
quency-domain quantities, adopting the convention
that if ! appears in an equation then all functions
appearing are the Fourier transforms of the original,
time-dependent functions.
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Earthquake sources can be modeled by choosing
particular force distributions fi. The problem of

determining the ‘equivalent body force distribution’
to represent (prescribed) slip on an earthquake fault

was originally solved by Burridge and Knopoff (1964)

using the elastodynamic representation theorem. A

very general and, at the same time, simple approach

to the problem of determining body force equivalents
is that of Backus and Mulcahy (1976). They argue

that an earthquake occurs as a result of the failure of

the assumed constitutive law, in the linear case

Hooke’s law, relating stress and strain. This leads

them to introduce a symmetric tensor quantity

�ij¼�ij (x, t), called the ‘stress glut’, which represents
the failure of Hooke’s law to be satisfied. Importantly,

�ij (1) will be zero outside the fault zone; (2) will be

zero at times before the earthquake, and (3) will have

vanishing time derivative at times after slip has

ceased. Thus the ‘glut rate’, _�ij , is compact in space
and time. The earlier concept of ‘stress-free strain’,

due to Eshelby (1957) is a closely related one. The

strain, for slip on a fault, contains �-function terms at

the fault, because the displacement is discontinuous.

The stress, on the other hand, is finite on the fault.
Thus, there exists a stress-glut – a failure of the stress

to satisfy Hooke’s law, and a stress-free strain, that is,

a component of the strain field that is not reflected in

the stress. The existence of a nonvanishing stress-

glut, �ij, leads us to replace [21] by

�0 üi þ �1
;i þ �0

;ij uj

� 

¼ �jilkuk;l –�ij

� �
;j

½28�

that is,

�0 üi þ �1
;i þ �0

;ij uj

� 

– �jilkuk;l

� �
;j
¼ –�ij ;j ½29�

and thus comparing [25] with [29], the equivalent
body force distribution is found to be fi ¼ –�ij ;j .
Because _�ij (x, t) is compact in space and time, it is
appropriate for calculations at long period and long
wavelength to replace it by a �-function in space and
time. Defining the ‘moment tensor’

Mij ¼
Z

V

�ij x;1ð Þd3x ¼
Z 1

–1

Z

V

_�ij x; tð Þd3x dt ½30�

where V is the source volume – the region over which
�ij is nonzero – a suitable form for �ij is

�ij ðx; tÞ � Mij �
3ðx – xsÞHðt – tsÞ, where H(t) is the

Heaviside step function, and where xs, ts are the
source coordinates. Thus, fi � –Mij qj �

3 x – xsð Þ

H t – tsð Þ. In what follows, we shall consider the
more general point source

fi ¼ Fi –Mij qj

� �
�3 x – xsð ÞH t – tsð Þ ½31�

in which Mij is not necessarily symmetric, recogniz-
ing that for sources not involving the action of forces
external to the Earth, so-called indigenous sources,
Mij must be symmetric and Fi must be zero. The
solution for a point force Fi is of fundamental theore-
tical interest since the solution in this case is the
Green’s function for the problem, which can be
used to construct solutions for any force distribution
fi. Nonsymmetric Mij corresponds to a source which
exerts a net torque or couple on the Earth.

The hyperelastic constitutive law based on the
internal energy function E(x, e) needs to be modified

to include the effects of energy loss due to such

effects as grain boundary sliding and creep. Such

‘anelastic’ effects lead to dissipation of energy (i.e.,

conversion of elastic stored energy into heat) and

thus to the decay, or ‘attenuation’ of seismic waves.

In addition, they are responsible for such effects as

postseismic relaxation, and the theory developed

here is in large part applicable to this problem also.

A generalization of the constitutive law which retains

linearity is the viscoelastic law, which supposes that

stress depends not only on the strain at a given

instant, but also on the strain history. This can be

written as

tij tð Þ ¼
Z 1

–1
cijkl t – t 9ð Þuk;l t 9ð Þdt 9 ½32�

where tij is incremental stress. (In fact, it can be shown
that the true increment in stress, at a material parti-
cle, includes terms in the initial stress: t 1

ij ¼ cijkl uk;l þ
t 0
ikuj ;k þ t 0

jkui;k – t 0
ij uk;k , but this makes no difference to

the discussion here.) Thus, the elastic constants
become functions of time, relative to a given time t

at which the stress is evaluated. Importantly, since
stress can depend only upon past times, cijkl(t) must
vanish for negative values of t; that is, it must be a
‘causal’ function of time. In order to recover the strict
Hooke’s law, tij ¼ cijkl uk;l we need cijkl ðtÞ ¼ cijkl�ðtÞ
(we are distinguishing here between cijkl unadorned,
which has the units of stress, and cijklðtÞ, which has
the units of strees/time). In the frequency domain,
using the convolution theorem,

tij ð!Þ ¼ cijkl ð!Þui;j ð!Þ ½33�
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Because cijkl ðtÞ is a causal function, its Fourier
transform

cijkl ð!Þ ¼
Z 1

0

cijkl ðtÞe�i!t dt ½34�

will be analytic, that is, will have no singularities, in
the lower half of the complex !-plane, as the integral
(34) will converge unconditionally in the case that !
possesses a negative imaginary part. From [34]

cijkl ð!Þ� ¼ cijklð –!�Þ. For our purposes here, the

key conclusion is that ‘in the frequency domain’, it
makes virtually no difference to the theory whether
the material is hyperelastic, or viscoelastic, as we
have simply everywhere to substitute cijkl ð!Þ for
cijkl . In fact, there is even no need to introduce a

new notation, but only to remember that now cijkl

can represent a complex quantity depending on !
and analytic in the lower half of the complex !-plane.
When writing equations in the time domain, we have
to remember that cijkl can be a convolution ‘operator’,
acting on the strain. (It may be remarked that the
above derivation of the equations of motion, based on
Hamilton’s principle, is in need of modification if
Eðx; eÞ does not exist. We do not quite know how
to do this, but a monograph by Biot (1965) discusses
the use of variational principles in the presence of
anelastic effects.) Kanamori and Anderson (1977),
and references cited therein, is a good source for
further information on this topic.

It is often useful to summarize the equations and
the boundary conditions by a single simple equation:

ðH þ �0q2
t Þu ¼ f ½35�

where H represents the integro-differential operator
corresponding to the left side of [25], omitting the
term in �0ü, in which �1 is thought of as a functional
of u that is, as the solution of Poisson’s equation [22]
corresponding to a given u(x, t), together with the
boundary conditions relating to �1 in [24]. Thus, H u
incorporates the solution of [22]. In the attenuating
case, H also includes the time-domain convolutions
arising from the viscoelastic rheology.

1.02.3 The Generalized Spherical
Harmonics

The reduction of these equations in spherical coor-
dinates is most easily accomplished through the use
of the generalized spherical harmonic formalism
(Phinney and Burridge, 1973). Here we describe
how this formalism is used, giving some key results

without derivation. We shall use a standard set of

Cartesian coordinates (x, y, z) and spherical coordi-

nates ðr ; �; �Þ related by

x1 ¼ x ¼ r sin � cos�

x2 ¼ y ¼ r sin � sin�

x3 ¼ z ¼ r cos �

½36�

Unit vectors in the coordinate directions are
given by

r̂ ¼ ½sin � cos�; sin � sin�; cos ��

q̂ ¼ ½ cos � cos�; cos � sin�; – sin ��

�̂ ¼ ½ – sin�; cos�; 0�

½37�

Spherical components of vectors and tensors will be
written, for example, as u� ¼ uk�̂k;t

0
r� ¼ t 0

ij r̂i �̂j .
The prescription provided by the generalized sphe-

rical harmonic formalism is first to define the ‘spherical

contravariant components’ of the vectors and tenors

that appear, and then to expand their dependence on

(� ,�) in terms of complete sets of functions appropriate

to the particular component. For a tensor of rank p,

having spherical components si1i2			ip
, spherical contra-

variant components are defined by

s	1	2				p ¼ Cy	1 i1 Cy	2 i2 
 	 	 	 
 Cy	p ip si1 i2			ip
½38�

where indices ik label the spherical components ik P
r ; �; �f g and where indices 	k take values
	k P – 1; 0;þ1f g; the nonvanishing coefficients Cy	i

are Cy0r¼ 1, Cy�1�¼�2� 1/2, Cy�1�¼ 2� 1/2i. The
inverse transformation, from spherical contravariant
components to spherical components, is

si1 i2 ...ip
¼ Ci1	1

Ci2	2

 	 	 	 
 Cip	p

s	1	1 ...	p ½39�

with Ci	¼ (Cy	i)�. The spherical harmonic basis,
Yl

Nm(�,�) appropriate for each contravariant compo-
nent is determined by the sum N¼	1þ	2þ 	 	 	 þ	p

of its indices. Thus, we expand

s	1	1 				p ¼
X

lm

s
	1	1				p

lm rð ÞY Nm
l �; �ð Þ with

N ¼ 	1 þ 	1 þ 	 	 	 þ 	p ½40�

Yl
Nm(�,�) are the generalized spherical harmonics:

Y Nm
l �; �ð Þ ¼ PNm

l cos �ð Þeim� ¼ d
lð Þ

Nm �ð Þeim� ½41�

where the ‘real’ quantities dNm
(l ) (�)¼ Pl

Nm(cos �) are
rotation matrix elements employed in the quantum
mechanical theory of angular momentum (Edmonds,
1960); thus, Yl

Nm vanish for N or m outside the range
� l to l. In [40] summations over l and m are for
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integers l¼ 0, 1 , . . . ,1, m¼ � l,� lþ 1,. . .,l. The
spherical harmonic degree l characterizes a group
representation of the rotation group; as a conse-
quence, tensor fields that are spherically symmetric
have only the term with l¼ 0, N¼ 0, m¼ 0. The
property of the rotation matrix elements

d
lð Þ

Nm 0ð Þ ¼
1; if m ¼ N and l � Nj j

0; otherwise

(

½42�

is a very useful one, for example, for calculations of
source excitation coefficients when it is required to
evaluate spherical harmonic expressions for �¼ 0
(see below). Equation [42] says that regarded as
(2lþ 1)
 (2lþ 1) matrix, having row index N and
column index m, d

ðlÞ
Nm(0) is the unit matrix. Matrices

d
ðlÞ
Nm(�) have symmetries d

ðlÞ
–N –mð�Þ ¼ d

ðlÞ
mN ð�Þ ¼

ð – 1Þm –N
d
ðlÞ
Nmð�Þ, from which follows the relation

Yl
Nm(�,�)�¼ (� 1)m�NYl

�N�m(�,�) where asterick
denotes the complex conjugate.

Yl
Nm satisfy the orthogonality relation

Z �

–�

Z �

0

Y Nm9
l9 �; �ð Þ�Y Nm

l �; �ð Þ


 sin � d� d� ¼ 4�

2l þ 1
�l9l�m9m ½43�

Thus, the expansion coefficients in [40] can be
written as

s
	1	1				p

lm rð Þ ¼ 2l þ 1

4�

Z �

–�

Z �

0

Y Nm
l �; �ð Þ�s	1	1 				p


 sin� d� d� with

N ¼ 	1 þ 	1 þ 	 	 	 þ 	p ½44�

Other normalizations for the spherical harmonics
have frequently been used in the literature.

Completely normalized spherical harmonics can be
written as Y m

l ð�; �Þ ¼ 
l Y
0m
l , where 
l Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2l þ 1Þ=4�
p

. In this chapter we shall adopt the

same conventions as in the paper by Phinney and
Burridge (1973) for the generalized spherical harmo-
nics, using the explicit form 
lYl

0m when completely
normalized spherical harmonics are needed.

The following is the key property of the general-
ized spherical harmonics under differentiation:

�q�þ i csc�q�
� �

Y Nm
l ¼

ffiffiffi
2
p

�l
�N Y

N�1m
l –Ncot�Y Nm

l ½45�

which leads to the following rule for the expansion
coefficients of the gradient of a tensor:

s
	1	1 				p j0
lm ¼ d

dr
s
	1	1 				p

lm

s
	1	1 				p j�
lm ¼ r – 1�l�N s

	1	1 				p

lm

– r – 1

the sum of the terms obtained

from s
	1	1 ...	p

lm by adding �1 to each

of 	1	1 . . .	p in turn; omitting any

terms for which the resulting

index	k � 1 =2 – 1; 0; 1f g

0

BBBBB@

1

CCCCCA

½46�

where �l
N X ½ðl þ NÞðl –N þ 1Þ=2�1=2 and N X	1 þ

	1 þ 	 	 	 þ 	p . The notation slm
	1	2	 	 		pj	pþ 1 is used to

denote the expansion coefficients of the spherical
contravariant components of the tensor having
Cartesian components si1i2	 	 	ip,ipþ 1

. Contraction over
contravariant indices is carried out using the metric
tensor g	1	2

¼Ci	1
Ci	2

, which has nonvanishing
entries g00 ¼ 1; g –þ ¼ gþ – ¼ – 1. Thus, for exam-
ple, the expansion coefficients of the divergence of
a tensor ti¼ sij,,j, say, are given by

t	lm ¼ – s
	þj –
lm þ s

	 0j0
lm – s

	 – jþ
lm ¼

– s
–þj –

lm þ s
– 0j0

lm – s
– – jþ

lm ; 	 ¼ – 1

– s
0þj –
lm þ s

00j0
lm – s

0 – jþ
lm ; 	 ¼ 0

– s
þþj –
lm þ s

þ0j0
lm – s

þ – jþ
lm ; 	 ¼ 1

8
>>>>><

>>>>>:

¼

–
1

r
�l

0s –þlm – s – 0
lm

� �
þ d

dr
s – 0

lm –
1

r
�l

2s – –
lm – s0 –

lm – s – 0
lm

� �
; 	 ¼ – 1

–
1

r
�l

1s0þ
lm – s –þlm – s00

lm

� �
þ d

dr
s00

lm –
1

r
�l

1s0 –
lm – sþ –

lm – s00
lm

� �
; 	 ¼ 0

–
1

r
�l

2sþþlm – s0þ
lm – sþ0

lm

� �
þ d

dr
sþ0

lm –
1

r
�l

0sþ –
lm – sþ0

lm

� �
; 	 ¼ 1

8
>>>>>>>>><

>>>>>>>>>:

½47�

The major advantage of this formalism is that, in a
spherically symmetric system, it enables vector and
tensor relations to be transformed into relations for

spherical harmonic coefficients, by the application of
a straightforward set of rules. Importantly, the result-
ing relations (1) are true for each value of l and m
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separately, and (2) are the same for each spherical
harmonic order m.

The treatment of aspherical systems requires
results for the products of spherical harmonic expan-
sions. It can be shown that

Y N1m1

l1
Y N2m2

l2
¼ – 1ð ÞN1þN2 –m1–m2

Xl1þl2

l ¼ l1–l2j j
2l þ 1ð Þ


 l l1 l2
–N1 –N2 N1 N2

� �


 l l1 l2
–m1 –m2 m1 m2

� �
Y N1þN2m1þm2

l ½48�

Where the so-called ‘Wigner 3-j symbols’ are the
(real) quantities arising in the theory of the coupling
of angular momentum in quantum mechanics (see
Edmonds (1960)). These satisfy

l1 l2 l3

m1 m2 m3

 !

¼ 0

unless:

l2 – l3j j � l1; l3 – l1j j � l2; l1 – l2j j � l3;

any one of which implies the other two

m1j j � l1; m2j j � l2; m3j j � l3

m1þm2 þm3 ¼ 0 ½49�

The 3-j symbol is symmetric under even permuta-
tions of its columns, and either symmetric or
antisymmetric under odd permutations, depending
upon whether l1 þ l2 þ l3 is even or odd. This has
the consequence that if the sum of the l’s is odd and if
the m’s are zero, the 3-j symbol is 0. Equation [48]
leads to the following result for the spherical harmo-
nic coefficients of the product of two tensor fields;
suppose that ci1i2...ip j1 j2...q

¼ ai1i2...ip
bj1 j2...jq ; then

c
	1	2...	p�1�2 ...�q

lm ¼ – 1ð ÞN1þN2 –m



X

l1 l2m1

l l1 l2
–N1 –N2 N1 N2

� �


 l l1 l2
–m m1 m –m1

� �
a
	1	2 ...	p

l1m1
b
�1�2 ...�q

l2m –m1
½50�

The summations here are over all values of l ; l1;m1;
however, it is a ‘finite’ sum by virtue of the fact that
the terms vanish for values outside the ranges speci-
fied in [49].

As an application of the spherical harmonic form-
alism, here we consider the expansion of the point
force distribution [31] in spherical harmonics. It will
be sufficient to locate the source at time ts¼ 0 and at
a point on the positive z-axis, that is, at x¼ 0, y¼ 0,
z¼ rs, where rs is the source radius. Because � ¼ 0 is a
singular point in the spherical coordinate system, we

shall consider the limit as the source approaches the

‘pole’, �s ¼ 0, along the ‘meridian’, �s ¼ 0. In the

frequency domain, [31] becomes

fi ¼
1

i!
Fi –Mij qj

� �
r – 2csc � � � – �sð Þ � �ð Þ� r – rsð Þ ½51�

In the limiting process, �s ! 0, we shall take Fi, Mij

to have constant spherical components F�, Mrr, Mr�,
etc. As �s ! 0, the q̂, f̂, and r̂ directions end up
pointing along the x, y, z directions, respectively, of
the global Cartesian coordinate system (e.g., see eqn
[37]), and thus although q̂, f̂ are undefined at � ¼ 0,
we can nevertheless interpret the spherical compo-
nents F�, Mr�, etc., as representing the components
Fy, Mzx, etc., of the point force and moment tensor in
the global Cartesian system. Let � represent the
expression � ¼ i!ð Þ – 1

r – 2csc� � � – �sð Þ� �ð Þ� r – rsð Þ,
so that [51] can be written as fi ¼ Fi� – qiMij�. The
spherical contravariant components of Fi and Mij,
using a matrix representation of [39], are given by

F –

F 0

Fþ

2

66664

3

77775
¼

1
ffiffiffi
2
p i

ffiffiffi
2
p 0

0 0 1

–
1
ffiffiffi
2
p i

ffiffiffi
2
p 0

0

BBBBBBB@

1

CCCCCCCA

F�

F�

Fr

2

66664

3

77775

M – – M – 0 M –þ

M0 – M00 M0þ

Mþ – Mþ0 Mþþ

0

BBBB@

1

CCCCA
¼

1
ffiffiffi
2
p i

ffiffiffi
2
p 0

0 0 1

–
1
ffiffiffi
2
p i

ffiffiffi
2
p 0

0

BBBBBBB@

1

CCCCCCCA




M�� M�� M�r

M�� M�� M�r

Mr� Mr� Mrr

0

BBBB@

1

CCCCA

1
ffiffiffi
2
p 0 –

1
ffiffiffi
2
p

i
ffiffiffi
2
p 0

i
ffiffiffi
2
p

0 1 0

0

BBBBBBB@

1

CCCCCCCA

½52�

The spherical harmonic expansion coefficients of
F	� and M	1	2�, for which we use the notation
F	�ð Þlm; M	1	2�ð Þlm; are immediate using [44],

integrating out the �-functions contained in �. We
obtain

F	�ð Þlm ¼
2l þ 1

4�i!

� r – rsð Þ
r 2

Y	m
l �s ;0ð Þ�F	

¼ 2l þ 1

4�i!

� r – rsð Þ
r 2

d lð Þ
	m �sð ÞF	

¼
2l þ 1

4�i!

� r – rsð Þ
r 2

F	; if m¼ 	 and l � 	j j

0; otherwise

8
><

>:
½53�
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where �s has been set to 0 in the second line, using
[42]. Similarly,

M	1	2�ð Þlm

¼ 2l þ 1

4�i!

� r – rsð Þ
r 2

Y	1þ	2m
l �s ;0ð Þ�M	1	2

¼ 2l þ 1

4�i!

� r – rsð Þ
r 2

d
lð Þ
	1þ	2m �sð ÞM	1	2

¼
2l þ 1

4�i!

� r – rsð Þ
r 2

M	1	2 ;

0;

if m¼ 	1 þ	2

and l � 	1 þ	2j j

otherwise

8
>><

>>:
½54�

To complete the evaluation of the coefficients f 	lm
corresponding to [51], we need to find the spherical

harmonic coefficients of the divergence of the field
represented in [54], for which we can employ [47];
we find

f –
lm

f 0
lm

f þlm

2

66664

3

77775
¼

ðF –�Þlm þ ðM –þ�Þj –lm – ðM – 0�Þj0lm
þðM – –�Þjþlm

ðF 0�Þlm þ ðM0þ�Þj –lm – ðM00�Þj0lm
þðM0 –�Þjþlm

ðFþ�Þlm þ ðMþþ�Þ
j –
lm – ðMþ0�Þj0lm

þðMþ –�Þjþlm

2

66666666666664

3

77777777777775

½55�

¼ 2l þ 1

4�i!



M – – �l
2r – 1

0

0

2

66664

3

77775

�ðr – rsÞ
r 2

; m ¼ – 2; l � 2

F – –M – 0qr – 2M – 0r – 1 –M0 – r – 1

M0 – �l
1r – 1

0

2

66664

3

77775

�ðr – rsÞ
r 2

; m ¼ – 1; l � 1

M –þ�l
0r – 1

F0 –M00qr – 2M00r – 1 –M –þr – 1 –Mþ – r – 1

Mþ – �l
0r – 1

2

66664

3

77775

�ðr – rsÞ
r 2

; m ¼ 0

0

M0þ�l
1r – 1

Fþ –Mþ0qr – 2Mþ0r – 1 –M0þr – 1

2

66664

3

77775

�ðr – rsÞ
r 2

; m ¼ 1; l � 1

0

0

Mþþ�l
2r – 1

2

66664

3

77775

�ðr – rsÞ
r 2

; m ¼ 2; l � 2

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
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½56�

These are the spherical harmonic coefficients of the
force distribution (31) which will be needed in the
following sections. The coefficients are zero for
jmj > 2.

1.02.4 The Green’s Function for
the Spherically Symmetric Earth

We consider here the case in which the Earth model
is spherically symmetric. In this case the equations of

motion are separable in spherical coordinates, and
thus can be solved by reduction to ordinary differ-

ential equations. Since deviations from spherical

symmetry are relatively small in the Earth, they can
subsequently be treated by perturbation theory. We

assume that in the initial equilibrium configuration

the stress is hydrostatic, that is,

t 0
ij ¼ – p0�ij ½57�

Spherical symmetry requires that �0; �0; p0 are func-
tions only of r. The gravitational acceleration is
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g0
i ¼ �0

;i ¼ g0ðrÞbri , and the equilibrium equations

[18], [19], and the boundary conditions in [24] have
the solutions:

g0ðrÞ ¼ 4�G

r 2

Z r

0

�0ðrÞdr

�0ðrÞ ¼ –

Z 1

r

g0ðrÞdr

p0ðrÞ ¼
Z a

r

�0ðrÞg0ðrÞdr

½58�

where a is the radius of the Earth. The equations of
motion [25] with [17] and [19] can be put into the
form

� –!2ui –uk;kgi þ’;i þ ðukgkÞ;i
h i

– ðCijkl uk;l Þ;j ¼ fi ½59�

ð’;k þ 4�G�ukÞ;k ¼ 0 ½60�

where we have introduced the effective stiffness
tensor

Cijkl ¼ cijkl þ p0ð�ij �kl – �il�jk – �ik�jl Þ ½61�

which has the same symmetries (eqn [14]) as does cijkl .
In [59], [60], and in subsequent equations, we drop
the superscripts in �0; g0, using simply �; g for these
quantities. We also use the notation ’ in place of �1.
The applied force distribution fi will be taken to be
that given in [31] and [51], having the spherical
harmonic coefficients [56].

In a spherically symmetric model, the tensor field
Cijkl must be a spherically symmetric tensor field, and
therefore its spherical harmonic expansion will have
terms only of degree l¼ 0. Its spherical contravariant
components C	1	2	3	3 ¼ C	1	2	3	3

00 must have indices
that sum to zero, and must also satisfy the usual elastic
tensor symmetries [14]. It is easily seen that there are
only five independent components that satisfy these
requirements: C0000;Cþ – 00;Cþ0 – 0;Cþþ – – ;Cþ –þ – ,
which must be real (in the nonattenuating case) in
order that the spherical components Cijkl are real.
Conventionally, these are designated (Love, 1927;
Takeuchi and Saito, 1972) as

C0000 ¼CðrÞ; Cþ – 00 ¼ – FðrÞ; Cþ0 – 0 ¼ –LðrÞ
Cþþ – – ¼ 2NðrÞ; Cþ –þ – ¼ AðrÞ –NðrÞ

½62�

the independent spherical components being (using
[39])

Crrrr ¼ CðrÞ; Crr�� ¼ Crr�� ¼ FðrÞ
Cr�r� ¼ Cr�r� ¼ LðrÞ; C���� ¼ NðrÞ
C���� ¼ AðrÞ – 2NðrÞ; C���� ¼ C���� ¼ AðrÞ

½63�

The mean ‘bulk modulus’ 
 and ‘shear modulus’ �
can be defined by


 ¼ 1

9
Ciijj ¼

1

9
ð4Aþ C – 4N þ 4FÞ

� ¼ 1

10
Cijij –

1

30
Ciijj ¼

1

15
ðAþ C þ 6Lþ 5N – 2FÞ

½64�

Other conventional notations are

� ¼
 – 2

3
�; v2

PV ¼ C=�; v2
PH ¼ A=�; v2

SV ¼ L=�

v2
SH ¼N=�; � ¼ F=ðA – 2LÞ

½65�

In the case that the material is ‘isotropic’, A ¼ C ¼ �
þ 2� ¼ 
þ 4

3�;N ¼ L ¼ �; and � ¼ 1.

Now we seek solutions ui ; ’ [59], [60] in terms of
spherical harmonic expansions. It is convenient to
write

u –
lm ¼ 
l �

l
0 VlmðrÞ – iWlmðrÞ½ � ½66�

u0
lm ¼ 
l UlmðrÞ ½67�

uþlm ¼ 
l �
l
0 VlmðrÞ þ iWlmðrÞ½ � ½68�

where 
l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l þ 1=4�

p
, as the ‘U, V, W’ notation is

almost universally used in the literature on long
period seismology. The expansion corresponding to
[40] is then equivalent to the vector spherical har-
monic representation (e.g., Morse and Feshbach,
1953):

ur ¼
X

lm

UlmðrÞ
l Y
0m
l ð�; �Þ

u� ¼
X

lm

VlmðrÞq� þWlmðrÞcsc � q�

 �


l Y
0m
l ð�; �Þ

u� ¼
X

lm

VlmðrÞcsc � q� –WlmðrÞq�

 �


l Y
0m
l ð�; �Þ

½69�

We shall abbreviate such vector spherical harmonic
expansions using the shorthand

ui :!

UlmðrÞ

VlmðrÞ

WlmðrÞ

2

664

3

775 ½70�

meaning that the vector field having Cartesian com-
ponents ui is expressible in vector spherical
harmonics as in [69]. We shall also suppress the
suffices l, m and the explicit dependence upon r,
writing simply U, V, W.

The spherical harmonic expansion of fi can also be
converted into this vector spherical harmonic nota-
tion. Using [56] with [52], we obtain

Earth’s Free Oscillations 41



fi :!

l

i!

ðrFr þM�� þM��Þ�ð0ÞðrÞ –Mrr�
ð1ÞðrÞ

1

2
ð –M�� –M��Þ�ð0ÞðrÞ

1

2
ð –M�� þM��Þ�ð0ÞðrÞ

2

66666664

3

77777775

; m ¼ 0

�

2
ð�Mr� þ iMr�Þ�ð0ÞðrÞ

1

2�
½ð�rF� þ irF� � Mr� – iMr�Þ�ð0ÞðrÞ þ ð�M�r – iM�r Þ�ð1ÞðrÞ�

� i

2�
½ð�rF� þ irF� � Mr� – iMr�Þ�ð0ÞðrÞ þ ð�M�r – iM�r Þ�ð1ÞðrÞ�

2

6666666664

3

7777777775

; m ¼ �1

0

1

4�

ffiffiffiffiffiffiffiffiffiffiffi
�2 – 2

p
ðM�� –M��� iM��� iM��Þ�ð0ÞðrÞ

� i

4�

ffiffiffiffiffiffiffiffiffiffiffi
�2 – 2

p
ðM�� –M��� iM��� iM��Þ�ð0ÞðrÞ

2

66666664

3

77777775

; m ¼ �2

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
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½71�

where �ð0ÞðrÞ ¼ r – 3�ðr – rsÞ and �ð1ÞðrÞ ¼ r – 2�9ðr –
rsÞ and where � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl þ 1Þ

p
:

Using the spherical harmonic formalism, the vec-
tor spherical harmonic representation of the ‘radial
tractions’ is given by

Cijkl uk;l r̂j !
P ¼ Fr – 1ð2U – �2V Þ þ Cqr U

S ¼ Lðqr V – r – 1V þ r – 1UÞ

T ¼ Lðqr W – r – 1W Þ

8
>><

>>:
½72�

where we have introduced traction scalars
P ¼ PlmðrÞ; S ¼ SlmðrÞ;T ¼ TlmðrÞ. Because the

radial tractions are required to be continuous at
interfaces between different regions of the model
(from [24]), it is usual to treat them as new dependent
variables, and to express the derivatives qr U ; qr V ; qr

W in terms of them:

qr U ¼ – r – 1FC – 1ð2U – �2V Þ þ C – 1P

qr V ¼ r – 1ðV –UÞ þ L – 1S

qr W ¼ r – 1W þ L – 1T

½73�

The vector spherical harmonic expansion of the left
side of [59] becomes

fi :!
–�!2U þ2r –2ðA – NÞð2U – �2V Þþ�ðqr g –2r –1gÞU þ�2r –1�gV – qr Pþ2r –1Fqr U – 2r –1P þ r –1�2Sþ�qr’

–�!2V – r –2Að2U – �2V þ2r –2NðU –V ÞÞþ r –1�ðgU þ’Þ–qr S –3r –1S –r –1qr U

–�!2W þ r –2Nð�2–2ÞW –qr T –3r –1T

8
>><

>>:
½74�

Thus, ordinary differential equations in r for
U, V, W, P, S, T are obtained by equating these to the
forcing terms in [71]. In addition, the expansion
coefficients of the perturbation in gravitational
potential, ’ ¼ ’lmðrÞ, are subject to equations
derived from (60). The boundary conditions [24]
require that ’ and qr’þ 4�G�U are continuous
throughout the model, and that ’ vanishes at infinity.
For a given spherical harmonic degree l the solutions
of Laplace’s equation tending to zero at infinity are
proportional to r – l – 1, and for this reason it is
useful to define the new dependent variable

 ¼ qr’þ ðl þ 1Þr – 1’þ 4�G�U , so that  is con-

tinuous throughout the model and vanishes at the
surface. This leads to the following coupled equa-
tions for ’lmðrÞ;  lmðrÞ:

qr’ ¼  – ðl þ 1Þr – 1’ – 4�G�U

qr ¼ 4�G�r – 1ð�2V – ðl þ 1ÞUÞ þ r – 1ðl – 1Þ 
½75�

Thus, the complete boundary-value problem
for u(x,!) is to find, for each l, m, solutions UlmðrÞ;
VlmðrÞ; WlmðrÞ; �lmðrÞ; PlmðrÞ; SlmðrÞ;TlmðrÞ;  lmðrÞ,
satisfying (1) equality of the expressions in [71] and
[74], (2) eqns [73] – in essence definitions of P, S,
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T – and (3) eqns [75] governing the self-gravitation.
The equations governing W and T are independent of
the others, and so the problem naturally separates into
the problems for the six functions U ;V ; �; P; S;  ,
relating to ‘spheroidal’ motion, and for the two functions
W , T, relating to ‘toroidal’ motion. In a fluid region,
shear stresses are required to vanish, resulting in S ¼
0 and L¼N¼ 0, A¼C¼ F; the second equation in [72]
drops out and the equation arising from the second of
[74] can be solved for V ;V ¼ ðgU – P=�þ ’Þ=r!2,

and thus S and V can be eliminated from the equations,
resulting in equations for the four remaining variables
U ; �; P;  . The case l¼ 0 leads to purely radial motion,
V¼ 0 with  ¼ ’=r ; d’=dr ¼ – 4�G�U , and the
effective equations involve only U, P. The equations
are most conveniently stated as matrix differential equa-
tions, by rearranging them to give the radial derivatives
of either the six, four or two functions to be determined
in terms of the functions themselves. Here we define
‘stress displacement vectors’ as follows:

Spheroidal solid: ySs ¼

rU

r�V

r�

rP

r�S

r =4�G

2

6666666664

3

7777777775

; Spheroidal fluid: ySf ¼

rU

r�

rP

r =4�G

2

66664

3

77775
; Radial: yR ¼

rU

rP

" #

Toroidal solid: yTs ¼
r�W

r�T

" #

½76�

In each case, the resulting equations take the form

dy

dr
¼ Ayþ a�ðr – rsÞ þ b�9ðr – rsÞ ½77�

where the vectors a¼ a(r,!, l, m), b¼ b(r,!, l, m) can
be readily derived from [71], and where the matrices
A ¼ Aðr ; !; lÞ can be written in terms of submatrices
in the form

A ¼
T K

S –T9

 !

½78�

where K and S are symmetric and where T9 is the
transpose of T. The fact that the equations have this
special form stems from the fact that they arise from a
variational principle, and in fact are a case of Hamilton’s
canonical equations (Woodhouse, 1974; Chapman and
Woodhouse, 1981). However, the usual variational
derivations of the equations of motion neglect attenua-
tion, and so it is interesting that this symmetry of the
equations remains valid in the attenuating case. It plays
an important part in methods of calculation of normal

modes (see below), and also enables a complex version
of the theory in attenuating media to be developed
along the same lines (AL-Attar, 2007). It will later be
useful to introduce the partitioned matrix

S ¼
0 1

– 1 0

 !

where 1 is the unit matrix of appropriate dimension,
so that the matrix

SA ¼
S –T9

–T –K

 !

is symmetric. We shall also make use of the fact
(Woodhouse, 1988) that in the non-attenuating case,
–SA�, by which we shall mean the partial derivative
of A with respect to � ¼ !2, is positive semidefinite,
i.e. that y9ð –SA�Þy � 0 for any real column y, as
can be verified using the following forms for the
submatrices of A. The specific forms of matrices
T, K, S are:

TSs ¼

ð1 – 2F=CÞ=r �F=Cr 0

– �=r 2=r 0

– 4�G� 0 – l=r

0

BB@

1

CCA; KSs ¼
1=C 0 0

0 1=L 0

0 0 4�G

0

B@

1

CA

SSs ¼
– �!2 þ 4ð� – �grÞ=r 2 �ð�gr – 2�Þ=r 2 – �ðl þ 1Þ=r

�ð�gr – 2�Þ=r 2 – �!2 þ ½�2ð� þ NÞ – 2N �=r 2 ��=r

– �ðl þ 1Þ=r ��=r 0

0

BB@

1

CCA

½79�
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TSf ¼
g�2=!2r –1ð Þ=r �2=!2r 2

–4�G� – l=r

 !

KSf ¼
1=C –�2=�!2r 2 0

0 4�G

 !

SSf ¼
–�!2þ�g


ðg�2=r!2 –4Þ=r
�ðg�2=r!2 – l –1Þ=r

�ðg�2=r!2 – l –1Þ=r ��2=r 2!2

0

B@

1

CA

½80�

TR ¼ðð1 – 2F=CÞ=rÞ; KR ¼ 1=Cð Þ
SR ¼ – �!2 þ 4ð� – �grÞ=r 2

� � ½81�

TTs ¼ 2=rð Þ; KTs ¼ 1=Lð Þ
STs ¼ – �!2 þ ð�2 – 2ÞN=r 2

� � ½82�

where � ¼ A –N – F 2=C:

Equation [77] leads to solutions y(l, m, r) which are
discontinuous at the source radius rs. It can be shown

that the discontinuity at rs is given by (Hudson, 1969;

Ward, 1980)

y½ �r¼rþs
r¼r –

s
¼ s ¼ aþ Ab –

db

dr
½83�

and thus the boundary-value problem for y requires
the solution of the homogeneous equation
dy=dr ¼ Ay above and below the source, subject to
the conditions that the solution (1) is nonsingular at
the center of the Earth, (2) has vanishing traction
components at the surface, and (3) has the prescribed
discontinuity s at the source radius rs. The specific
forms for the discontinuity vector s, using [71] and
[83], are

sSs ¼ 
l

i!r 2
s




rsMrr=C

0

0

– rsFr –M�� –M�� þ 2Mrr F=C

�ðM�� þM��Þ=2 – �Mrr F=C

0

2

66666666666666666664

3

77777777777777777775

; l � 1;m ¼ 0

0

rsð�M�r þ iM�r Þ=2L

0

�ð�M�r þ iM�r � Mr� – iMr�Þ=2

rsð�F� – iF�Þ=2 – ð�M�r þ iM�r �Mr� – iMr�Þ=2

0

2

6666666666666666664

3

7777777777777777775

; l � 1;m ¼ �1

0

0

0

0

ffiffiffiffiffiffiffiffiffiffiffi
�2 – 2

p
ð –M�� þM�� � iM�� � iM��Þ=4

0

2

6666666666666666664

3

7777777777777777775

; l � 2;m ¼ �2

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

½84�
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sR ¼ 
0

i!r 2
s



rsMrr=C

– rsFr –M�� –M�� þ 2Mrr F=C

" #

; l ¼ m ¼ 0 ½85�

sTs ¼ 
l

i!r 2
s




0

� M�� –M��

� �
=2

2

4

3

5; l � 1;m ¼ 0

rs �M�r þ iM�r

� �
=2L

rsð�F� – iF�Þ=2þ ð�M�r – iM�r � Mr� þ iMr�Þ=2

2

4

3

5; l � 1;m ¼ �1

0

ffiffiffiffiffiffiffiffiffiffiffi
�2 – 2

p
ð�iM��� iM�� þM�� þM��Þ=4

2

4

3

5; l � 2;m ¼ �2

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

½86�

where the elastic parameters are those evaluated at the
source radius rs. We consider here only the case that
the source is located in a continuous, solid region of
the model. Equivalent results (in the case that the
moment tensor is symmetric and the material is iso-
tropic) are given by Ward (1980). (As described earlier
we are here considering the source to be located
at � ¼ "; � ¼ 0ð Þ, for some infinitesimal, positive ";
thus, F�; F�; Fr

� �
coincide with Fx ; Fy; Fz

� �
in the glo-

bal Cartesian frame defined in [36]. Similarly,

M��;M��; etc:
� �

coincide with Mxx;Mxy; etc:
� �

If

the source is located at a general colatitude �s and
longitude �s, the results can be applied in a rotated
frame in which the �; �; rð Þ components map into
(South, East, Up), coordinate � is epicentral distance
and coordinate � is azimuth of the receiver at the
source, measured anticlockwise from South.)

In the case that there is no forcing fi, the equations
reduce to the homogeneous system dy/dr¼Ay,

together with the usual boundary conditions at the

center of the Earth and at the surface. This is an

eigenvalue problem for ! having solutions corre-

sponding to the modes of ‘free oscillation’. The

eigenvalues will be denoted by !k, where k is an

index that incorporates the angular order l, the ‘over-

tone number’ n, and the mode type: spheroidal or

toroidal. Overtone number is an index labeling the

eigenfrequencies for a given l and for a given mode

type, in increasing order. Since the spherical harmo-

nic order m does not enter into the equations, the

modes are ‘degenerate’, meaning that there are 2lþ 1

different eigenfunctions, m¼ � l, � lþ 1, . . . , l cor-

responding to a given eigenvalue !k. The

eigenfunctions will be denoted by s(km)(x). These

are the solutions u(x) given by [69], for different

values of m, but with the ‘same’ scalar eigenfuctions
U(r), V(r), W(r), ’(r). The set of eigenfuctions,
s(km)(x), for a given eigenfrequency !k is said to
constitute a ‘multiplet’. The eigenfunctions repre-
sent the spatial shape of a mode of free oscillation at
frequency !k, because s(km)(x)ei!kt is a solution of the
complete dynamical equations in the absence of any
forcing. Of course the eigenfunction is defined only
up to an overall factor. If the medium is attenuating,
the eigenfrequencies will be complex, their (posi-
tive) imaginary parts determining the rate of decay
of the mode with time. It is conventional to quantify
this decay rate in terms of the ‘Q’ of the multiplet,
Qk, which is defined in such a way that the mode
decays in amplitude by a fator e��/Qk per cycle.
Therefore, Qk¼Re!k/2Im!k is typically a large
number, indicating that the modes decay by a rela-
tively small fraction in each cycle. The modal
multiplets are conventionally given the names nSl

for spheroidals and nTl for toroidals.

1.02.5 Numerical Solution

The inhomogeneous (i.e., with forcing term fi)
boundary-value problem as formulated above gives
a unique solution for each value of !. The solution in
the time domain can then be obtained in the form of
an integral in !, using the inverse Fourier transform
[27]. This, in essence, is the basis of several practical
methods for calculating theoretical seismogram, for
example, the ‘reflectivity method’ (Fuchs and Muller,
1971) and the direct solution method of Friederich
and Dalkolmo (1995). Alternatively, the inverse
transform can be evaluated by completing the
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integration contour in the upper half of the complex
! plane. Then it is found that the solution can be
reduced to a sum over residues, each pole of the
integrand corresponding to a particular mode of
‘free oscillation’ of the model. A more usual approach
to the normal mode problem is to consider first the
free (i.e., unforced) modal solutions of the equations,
and then to make use of the orthogonality and com-
pleteness properties of the eigenfunctions to obtain
solutions of the inhomogeneous (i.e., forced) problem.
Here, we have examined first the inhomogenous
problem because the demonstration of orthogonality
and completeness in the general (attenuating) case is
a nontrivial issue, and it is only by virtue of
the analysis of the inhomogeneous problem, and the
resulting analytic structure of the integrand in the
complex !-plane, that orthogonality and complete-
ness can be demonstrated. It is necessary to show (in
the nonattenuating case) that the only singularities of
the integrand are simple poles on the real !-axis.
Then the modal sum emerges and completeness is
demonstrated by the solution itself. In the attenuating
case the situation is more complex, and there are
other singularities located on the positive imaginary
!-axis – let us call them the relaxation singularities,
as they are associated with decaying exponential
functions in the time domain. Thus, while the solu-
tion developed here for the inhomogeneous problem
remains valid in this case, arguments based on ortho-
gonality and completeness cannot be made. The
solution can nevertheless be derived in the form of
a sum over residues, and other singularities. While
the contribution from relaxation singularities is the
main focus of attention in the analysis of postseismic
relaxation, they are expected to make negligible con-
tributions for the typical seismic application.
However, even in the seismic domain it is necessary
to know modal excitations in the attenuating case,
and these are difficult to determine, other than by a
rather complex application of mode-coupling theory
(Tromp and Dahlen, 1990; Lognonne, 1991), which
will be difficult to carry out to high frequencies.
Using the inhomogenous solution, on the other
hand, the ‘seismic’ modes and their excitations
emerge naturally as the contributions from the resi-
dues of poles near the real axis, and can be calculated
exactly and economically.

In both the attenuating and nonattenuating cases
and for both the homogenous and inhomogeneous
problems, the integration of the ordinary differential
equation presents severe numerical difficulties.
One problem is that the equations are such that

evanescent – exponentially increasing and decreasing –
solutions exist on more than one spatial scale. At
moderately high frequencies, when the equations are
integrated numerically, the solutions are effectively
projected onto the solution having the most rapid
exponential increase, and thus even though a linearly
independent set of solutions is guaranteed, theoreti-
cally, to remain a linearly independent set, it becomes,
numerically, a one-dimensional projection. The gen-
eral solution of this difficulty is to reformulate the
equations in terms of minors (i.e., subdeterminants) of
sets of solutions (Gilbert and Backus, 1966). The stan-
dard method for normal mode calculations
(Woodhouse, 1988) is based on the minor formulation
of the equations, and uses a novel generalization of
Sturm–Liouville theory to bracket modal frequencies,
itself a nontrivial issue for the spheroidal modes, as the
modes are irregularly and sometimes very closely
spaced in frequency, making an exhaustive search
difficult and computationally expensive. The program
MINOS of Guy Masters, developed from earlier pro-
grams of Gilbert, and of Woodhouse (also a
development of Gilbert’s earlier programs), imple-
ments this method, and has been generously made
available to the community. The direct solution
method for the inhomogeneous problem of Friederich
and Dalkolmo (1995) is based on the minor formula-
tion in the non-self-gravitating case, developed for the
flat-earth problem by Woodhouse (1980b).

Here we outline some of the key features of the
minor approach. Let us be specific by assuming that
the model has a solid inner core, a fluid outer core,
and a solid mantle. It may, or may not have an ocean.
Let us also consider the case of spheroidal oscilla-
tions, for which the solution vector is six dimensional
in solid regions (ySs) and 4-dimensional in fluid
regions (ySf). Toroidal an radial modes are much
simpler. The basic method of solution is to start at
the center of the Earth, and to specify that the solu-
tion should be nonsingular there. By assuming that
the medium is homogeneous and isotropic within a
small sphere at the center, it is possible to make use of
known analytical solutions in terms of the spherical
Bessel functions (Love, 1911; Pekeris and Jarosch,
1958; Takeuchi and Saito, 1972). Thus (in the
spheroidal case that we are considering), there is a
three-dimensional set of solutions to be regarded as
candidates for components of the solution at the
center. Using these three solutions as starting solu-
tions, the equations can be integrated toward the
surface, for example, using Runge–Kutta techniques.
We introduce a 6
 3 matrix Y¼YSs(r) having
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colums equal to these three solutions, which has 3
 3
subpartitions Q¼QSs(r) and P¼PSs(r), that is,

Y ¼
Q

P

" #

What is important about Y is the subspace of six-
dimensional space that is spanned by its three col-
umns, a property that is left unchanged if Y is
postmultiplied by any nonsingular 3
 3 matrix.
Assuming, for the moment, that Q and P are non-
singular, and postmultiplying by Q� 1 and by P� 1

we conclude that both
h

1
U

i
and

h
V
1

i
, where V

and U are the mutually inverse matrices V ¼ QP�1;

U ¼ PQ �1 and where 1 is the unit matrix, have
columns spanning the same three dimensional space
as is spanned by the columns of Y. An unexpected
property of U, V, stemming from the self-adjointness
property of the equations and boundary conditions, is
that they are ‘symmetric’. It is not difficult to show
that by virtue of the particular structure of the differ-
ential equations noted in [78] that if U, and
(therefore) V are symmetric at a given radius, then
they remain symmetric as the equations are inte-
grated to other radii. To demonstrate this, consider

d

dr
Q 9P –P9Qð Þ ¼ d

dr
Y9SYð Þ

¼ Y9A9SYþ Y9SAY ¼ 0 ½87�

where we have used the fact that SA is symmetric
and S is antisymmetric (see discussion following eqn
[78]. Thus, if Q9P�P9Q vanishes at a given radius,
it vanishes everywhere in the interval over which the
equations are being integrated. But we can write

Q 9P� P9Q ¼ Q 9 PQ – 1 –Q 9�1P9
� �

Q , which

shows that PQ� 1 is symmetric if Q9P�P9Q
vanishes. It is interesting to note that this argument
does not rely on Q and P being nonsingular through-
out the interval of integration, since Q9P�P9Q
remains finite and continuous. It is a lengthy alge-
braic exercise to show that U and V are symmetric at
the centre of the Earth (i.e., when the analytic solu-
tions are used), but nevertheless this can be verified
(it can be easily checked numerically).

To continue the narrative, the equations for YIC

are being integrated in the inner core, and we arrive
at the inner-core boundary. Here, the component of
the solution corresponding to the shear traction on
the boundary (the fifth element in our notation) is
required to vanish. Thus, at the boundary we need to
select from the three-dimensional space spanned by

the columns of Y the (in general) two-dimensional
subspace of stress–displacement vectors having van-

ishing fifth elements. This subspace is most easily
identified by considering the basis constituted by
h

V
1

i
, since its first and third columns have vanishing

fifth elements, and thus by deleting the middle col-

umn, together with the second and fifth rows, as they
correspond to variables not needed on the fluid side,
we obtain the following rule for transmitting the basis
of allowable solutions from the solid to the fluid side

of the boundary:

v11 v12 v13

v12 v22 v23

v13 v23 v33

1 0 0

0 1 0

0 0 1

0

BBBBBBBBBB@

1

CCCCCCCCCCA

!

v11 v13

v13 v33

1 0

0 1

0

BBBBB@

1

CCCCCA
½88�

We can now continue the integration, using the 4
 2
matrix YOC in the fluid outer core. We can define Q,
P, V, U similarly, now 2
 2, rather than 3
 3
matrices, and again V, U, are symmetric.
Continuing the integration, we arrive at the outer-
core boundary, and again need to consider how to
transmit the solution space across the boundary.
Elements in rows 1, 2, 3, 4 on the fluid side need to
be continuous with elements in rows 1, 3, 4, 6 on
the solid side. The fifth element on the solid side,
the shear traction component r�S , has to vanish.
Since the horizontal displacement can be anything
on the solid side we have to add to the basis to
represent solutions having nonvanishing horizontal
displacements on the solid side. The easiest way to
satisfy these requirements is to consider the basis

represented by
h

1
U

i
. It can be easily verified that

the following rule satisfies the requirements:

1 0

0 1

u11 u12

u12 u22

0

BBBBB@

1

CCCCCA
!

1 0 0

0 1 0

0 0 1

u11 0 u12

0 0 0

u12 0 u22

0

BBBBBBBBB@

1

CCCCCCCCCA

½89�

The middle column has been inserted to represent

the fact that the solution space has to contain vectors
with nonvanishing horizontal displacement scalar
ðr�V Þ at the base of the mantle.
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We can now continue the integration through the
mantle. In the inhomogenous problem, the next inter-
esting event is when we arrive at the source radius rs. In
the homogeneous problem, on the other hand we can
continue the integrations to the ocean floor, applying
the same rule as at the inner-core boundary to transmit
the solution space into the ocean, and then continue to
the surface, where the free surface condition needs to
be satisfied. The requirement, of course, is that there be
a linear combination of the columns of the 4
 2 matrix

YO ¼
Q O

PO

" #

(where superscript ‘O’ is for ocean) that have vanish-
ing surface traction scalar rP and vanishing gravity
scalar r =4�G, that is, vanishing elements 3 and 4.
This requires det(PO)¼ 0 at the free surface. In the
absence of an ocean, we similarly need det(PC)¼ 0
where PC is the 3
 3 matrix in the crust.

In the inhomogeneous case, we need to arrange
for there to be a prescribed discontinuity sSs at the
source depth. Thus, we need to characterize the
solution space above, as well as below the source.
At the surface of the ocean the solution must have
vanishing elements 3 and 4, and thus we choose YO at
the free surface to be, simply

YO ¼
1

0

" #

Now we can integrate the solution downwards,
using the same fluid–solid rule at the ocean floor as
was employed at the core–mantle boundary, until we

reach the source radius rs from above. If
h

1
Us

1

i
spans

the solution space below the source and
h

1
Us

2

i
spans

the solution space above the source, we need to solve

1

Us
2

" #

x2 –
1

Us
1

" #

x1 ¼ sSs ½90�

for the two 3-vectors x1, x2 which represent the multi-
pliers for the columns of each matrix that are needed to
satisfy the condition that the solution has the pre-
scribed discontinuity. The solution is easily found to be

x1 ¼ ðU2 –U1Þ – 1ðsSs
P –U2sSs

Q Þ
x2 ¼ ðU2 –U1Þ – 1ðsSs

P –U1sSs
Q Þ

½91�

where sSs
Q ; sSs

P are the upper and lower halves of sSs,
and the solution vectors below and above the source
are given by

ySS
1 ¼

x1

U1x1

" #

; ySS
2 ¼

x2

U2x2

" #

½92�

This determines the linear combination of the basis
vectors that are needed to satisfy the source discon-
tinuity condition, and hence to determine the
solution at any point of the medium and, in particu-
lar, at the surface, where it may be required to
calculate some seismograms.

There will be singularities in the integrand of the
inverse Fourier transform when U2�U1 is singular.
This will occur for frequencies ! for which a solution
exists to the homogenous (i.e., unforced) problem, that
is, at the frequencies of free oscillation. If U2�U1 is
singular at a particular source radius, it is, therefore,
necessarily singular at all radii. To evaluate the inverse
transform as a sum over residues, we can write

1

2�

Z 1

–1
I !ð Þeiwt d!!

X

k

i
lim
!!!k

� !ð ÞI !ð Þ

�9 !kð Þ
½93�

where !k is a mode frequency and �(!) is that factor
in the denominator of the integrand I(!) that
vanishes at !k, assuming that it has a simple zero at
!k. Thus, we can replace the inverse transform by a
sum over residues provided that the singular part of
the integrand is replaced by the expression corre-
sponding to it on the right-hand side of [93]. From
[91] we find that the necessary replacement is

U2 –U1ð Þ – 1! i
adj U2 –U1ð Þ

q!det U2 –U1ð Þ !¼!k
¼ 1

2i!k

zkz9k

���� ½94�

where adj represents matrix adjoint – the matrix of
cofactors. The second equality defines the column zk

and its transpose z9k, and arises from the fact that the
adjoint of a singular matrix, assuming that the rank
defect is 1, is expressible as a dyad; the factor – 1=2!k

is included in the definition for convenience, as with
this definition of zk, it can be shown that the column

yk ¼
zk

U1zk

" #

¼
zk

U2zk

" #

is an eigenfunction (i.e., a solution of dy/dr¼Ay)
and has normalization

Z a

0

y9k –SA�ð Þyk dr ¼ 1 ½95�

where the notation �SA� is that introduced in the
discussion following [78]. The eigenfunctions can be
found without needing to calculate the derivatives of
solutions with respect to !, as it can be shown that
det Q 1 det Q 2q! det U2 –U1ð Þ is independent of r.
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This is the basis for the construction of the eigenfunc-
tions from solutions of the minor equations, although it
was arrived at differently in Woodhouse (1988). We see
that it is necessary to integrate both upwards and down-
wards in order to obtain U1 and U2 (or, rather, the
minors from which they can be constructed, see
below) at all radii r.

In the nonattenuating case, the eigenfunctions yk

are real, and [95] reduces to the standard normal-
ization conditions for the scalar eigenfunctions Uk, Vk,
Wk (defined in terms of yk as in eqn [76],

spheroidal:

Z a

0

� U 2
k þ �2V 2

k

� �
r 2dr ¼ 1

toroidal:

Z a

0

��2W 2
k r 2dr

½96�

In the attenuating case, on the other hand, the eigen-
functions are complex and the normalization
condition [95] includes terms arising from the deri-
vatives of the elastic parameters with respect to !. In
this case [95] determines both the phase and the
amplitude of the eigenfunction. Using the replace-
ment [94] in [91], and making use of the definitions of
sSs, and similarly sTs, from [84]–[86] it can be shown
that the inhomogeneous solution, now in the time
domain, can be written as a sum over residues:

ylmðr ; tÞ ¼
X

k

–
1

2!2
k

EkmykðrÞei!k t ½97�

where ‘modal excitations’ Ekm are given by

Ekm ¼
y9k

P
sSs spheroidal

y9k

P
sTs toroidal

8
<

:

¼ 
l

rs

– rsUkFr – rsqr UkMrr –UkðM�� þM��Þ þ
1

2
�2VkðM�� þM��Þ

þ 1

2
�2WkðM�� –M��Þ

m ¼ 0

1

2
�rsðVk � iWkÞð � F� – iF�Þ þ

1

2
�rsðqr Vk� iqr WkÞð �M�r – iM�r Þ

þ 1

2
�ðUk –Vk � iWkÞð �Mr� – iMr�Þ

l � 1;m ¼ �1

1

4
�
ffiffiffiffiffiffiffiffiffiffiffi
�2 – 2

p
ðVk � iWkÞðM�� –M�� � iM�� � iM��Þ l � 2;m ¼ �2

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

½98�

where [72] has been used to express the radial trac-
tion components Pk, Sk, Tk in yk in terms of Uk, Vk, Wk

and their derivatives. The eigenfunctions are those
evaluated at the source radius rs . In [98] we have
combined the results for toroidal and spheroidal
modes; of course, for spheroidal modes Wk¼ 0 and
for toroidal modes Uk¼Vk¼ 0. This result for the
modal excitations is equivalent, in the case of a sym-
metric moment tensor to the forms given in table 1 of
Woodhouse and Girnius (1982).

The sum over residues [97] needs to be carried
out over all simple poles in the upper half of the
complex !-plane. It will include the oscillatory ‘seis-
mic modes’ having Re!k 6¼ 0, and also, possibly,
‘relaxation modes’ having Re!k ¼ 0; Im!k > 0.
The seismic modes will occur in pairs, !k, �!k

�

because the equations are symmetric under replace-
ment of !k by �!k

� followed by complex conjugation
(see discussion following eqn [34]). Thus, each seis-
mic mode having Re!k > 0 will have a partner,
obtained by reflection in the imaginary axis, at
�!k

�. It is not necessary to consider the modes for

which Re!k < 0 explicitly, as when the final result for
the displacement in the time domain is calculated, it
is possible to include them automatically by adding
the complex conjugate, in order that the final result
should be real. In the attenuating case, the solution is
still not necessarily complete, as the constitutive law
may introduce a branch cut along the positive ima-
ginary axis, corresponding to a continuous
distribution of relaxation mechanisms. In this case,
the sum over residues needs to be augmented by an
integral around any branch-cut singularities on the
positive imaginary axis. In order to include the ‘static’
response of the medium, it is necessary to analyze the
behavior of the integrand at !¼ 0. We do not pursue
this in detail here but make some general observa-
tions. Because the source that is being considered has,
in general, nonvanishing net force and net moment,
we would obtain secular terms corresponding to
translational and rotational rigid motions (degree
l¼ 1 spheroidal and toroidal modes having zero fre-
quency). If the force is set to zero and the moment
tensor is taken to be symmetric, these modes would
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not be excited. In this case, the final displacement

field, after all seismic modes and relaxation modes
have died away, can be found from the residue at zero

frequency, and will correspond to the static (!¼ 0)

solution of the equations in which the elastic

parameters are replaced by their values at zero
frequency – their so-called ‘relaxed’ values.

Alternatively, the final displacement can be found

by considering the fact that if the static terms are
omitted the final displacement is zero, because all

modes attenuate with time, whereas, in fact, it is the

‘initial’ displacement that should be zero. Thus, the

static terms must be such as to cancel the dynamic
terms at zero time. It is not obvious that these two

different ways of evaluating the static response will

agree (i.e., using the static solution for relaxed values

of the moduli, or using the fact that the initial dis-
placement must be zero). We conjecture, but do not

claim to prove that these two methods will give the

same result. If this is so, it means that, provided all
modes are included in the sum, we can include the

static response by substituting ei!k t – 1 for ei!k t in

[97] – that is, by subtracting the value at zero time.
A central role is played in the foregoing theory by

the symmetric matrices U and V, notwithstanding
that they possess singularities within the domain of

integration. From their definitions V¼QP� 1,

U¼PQ� 1, using the following standard formula

for the inverse of a matrix in terms of its cofactors
and its determinant, they can be expressed in terms of

the various 3
 3 or (in the fluid case) or 2
 2 sub-

determinants of Y. Explicitly, we have

U ¼ m2

m1
; V ¼ m1

m2
n ¼ 1ð Þ ½99�

U ¼ 1

m1

–m4 m2

m2 m3

 !

; V ¼ 1

m6

m3 –m2

–m2 –m4

 !

m1 ¼ det Q ; m6 ¼ det P n ¼ 2ð Þ ½100�

U¼ 1

m1

m11 –m5 m2

–m5 –m6 m3

m2 m3 m4

0

BB@

1

CCA; V¼ 1

m20

m10 –m9 m8

–m9 –m15 m14

m8 m14 m17

0

BB@

1

CCA

m1 ¼det Q ; m20 ¼ det P n¼ 3ð Þ ½101�

where mk are the minors of the relevant 2
 1, 4
 2,
3
 6 (n¼ 1, 2 or 3) solution matrices Y. We are using
a standard way of enumerating these (see
Woodhouse, (1988) and Gilbert and Backus, (1966)).
We include the n¼ 1 case here, which is relevant to

the case of toroidal and radial oscillations, for the
sake of completeness. The results still hold in this
case, although the matrices Q, P, V, U reduce in
this case to simple numbers, and the minors reduce
to the elements of the solution vector itself (the 1
 1
subdeterminants of a 2
 1 matrix Y). It is well
known (Gilbert and Backus, 1966) that differential
equations can be derived that are satisfied by the
minors, and thus they can be calculated directly,
without the need to integrate the equations for parti-
cular solution sets Y. Thus, formulas and results
involving V, U can be readily transcribed into
formulas involving the minors. Essentially, any one
of U, V, m provides a way of characterizing a sub-
space of the 2n-dimensional space of interest (n¼ 1,
2, or 3), in a way that is independent of any specific
basis. However, the minors have the practical advan-
tage that they do not become infinite in the domain of
integration.

The matrices U and V possess another remarkable
property which results from the positive semidefi-

niteness of –SA� in the nonattenuating case. Using

this property, it is possible to show that the deriva-

tives U� and V� also have definiteness properties.

For upward integration U� � 0 and V� � 0
where �0 and �0 is used as a a shorthand for the

relevant semidefiniteness property. To prove this,

consider the matrix P9Q � –Q 9P� ¼ – Y9SY�.

The radial derivative of this matrix is given by

d

dr
P9Q � –Q 9P�ð Þ ¼ –

d

dr
Y9SY�ð Þ

¼ –Y9A9SY� –Y9S A�Yþ AY�ð Þ
¼ –Y9SA�Y � 0 ½102�

where we have used dY=dr ¼ AY, together with its
transpose and its derivative with respect to �. The
cancellation of the terms not involving A� is due to
the symmetry of SA and the antisymmetry of S. We
also have

V� ¼ QP�1
� �

�
¼ Q �P�1 –QP�1P�P�1

¼Q �P – 1 –P9 – 1Q 9P�P – 1

¼P9 – 1ðP9Q � –Q 9P�ÞP – 1 ½103�

Thus, [102] shows that if P9Q � –Q 9P� � 0 at some
initial point, then it remains positive semidefinite
during upward integration. Then, from [103],
V� � 0, as we wished to show. Using the analytic
solutions at the center of the Earth, it can be shown
that V� does have the required properties at the
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starting point of integration, being independent of
frequency at the center of the Earth. Also, its semi-
definiteness property is preserved on passing from
solid to fluid and vice versa. Similarly, it can be
shown that for upward integration U�40.

The diagonal elements of V� and U�, which neces-
sarily share the semidefiniteness properties of the
matrices themselves, require, for upward integration,
that the diagonal elements of V and U are nondecreas-
ing and nonincreasing functions of frequency,
respectively. As a function of frequency these diagonal
elements behave like the familiar tangent and cotan-
gent functions, having monotonic increase or decrease
between their singularities. The singularities in V at
the surface are of particular interest, since the frequen-
cies for which V is singular (i.e., infinite) at the surface
are precisely the frequencies of the normal modes.
One particular diagonal element, namely v11 in the
notation used here, has the additional property, using
[88], [89], that it is continuous at solid–fluid and fluid–
solid boundaries. In the case of fluid–solid boundaries,
this is not so obvious, as both m10 and m20 vanish on the
solid side (v11 ¼ m10=m20, eqn [101]), but it can be
shown that the limit as the boundary is approached
from the solid side is, in fact, equal to v11 on the fluid
side.

The function �R r ; �ð Þ ¼ – 1
� cot – 1 v11ð Þ, which

can be made continuous (as a function of r and as a
function of �) through singularities of v11, has the
properties that (1) it is independent of frequency at
the center of the Earth, (2) it is nondecreasing as a
function of �, and (3) it takes on integer values
at the surface at the frequencies !2 ¼ � corres-
ponding the normal modes. This makes it an ideal
mode counter, since two integrations of the equa-
tions, at frequencies !1; !2 say, can determine the
values �R a; !2

1

� �
; �R a; !2

2

� �
at the Earth’s surface

and it is necessary only to find how many integers
lie between these values to determine how many
modal frequencies lie between !1 and !2. There is
a complication associated with fluid–solid bound-
aries. As discussed above, both m10 and m20 vanish
on the solid side, even though v11 remains continu-
ous. This circumstance leads to singular behavior of

�R as a function of �, and we find that it is necessary
to increment �R by 1 at a fluid solid boundary when
the (2, 2) element of sSs (eqn [79]) is negative on the
solid side, that is, for !2 > ½�2 A – F 2=Cð Þ – 2N �=�r 2,
in which the elastic constants are those evaluated at
the boundary, on the solid side and r is the radius of
the boundary. For upward integration (the usual
case) this occurs at the core–mantle boundary.

Figure 3 shows an example of the behavior of

�R x; �ð Þ for spheroidal oscillations of degree l¼ 10.

The �R mode counter can be used to bracket the

modal frequencies by a bisection method that seeks

values of frequency such that �R a; !2ð Þ takes on

values lying between any pair of successive inte-

gers in an interval �R a; !2
min

� �
; �R a; !2

max

� �h i
.

Having bracketed the modal frequencies (for a
given l), it is necessary to converge on the zeros of
det P½ �jr¼a . This can be done in a variety of standard

ways, bisection being the ultimately safe method if all
else fails. Figure 4 shows the resulting ‘dispersion

diagram’ for spheroidal modes up to 30 mHz. The

crowding and irregularity of the distribution in the

left side of the diagram demonstrate the need for

the mode-counting scheme. For the toroidal modes,

the dispersion diagram is much simpler (Figure 5),
and so the mode-counting scheme is less critical.
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Figure 3 An example of the behavior of �R x; �ð Þ for the

spheroidal oscillations of degree l ¼ 10. It has been calcu-
lated for the true modal frequencies up to 20S10, and thus

the surface value of �R x; �ð Þ, at normalized radius x ¼ 1,

takes on successive integer values equal to the overtone

number. �R can be seen to be independent of frequency at
the center of the Earth (x ¼ 0), where �R x; �ð Þ ¼ 1=2. The

nondecreasing property of �R as a function of � ¼ !2 means

that successive curves never cross. Notice that �R is not a
monotonic function of r. The discontinuity in �R at the core–

mantle boundary, discussed in the text, affects the mode

count for modes higher than 9S10. In a sense the values

of �R x; �ð Þ ¼ – 1=�ð Þ cot –1v11 are not of physical signifi-
cance, since v11 is a dimensional quantity, and thus the

value of �R x; �ð Þ depends on the units employed. In any

system of units, however, �R takes on integer values at the

same values of its arguments. In other words, it is the ‘zero
crossings’ of v11, for which �R acts as a counter, that are of

primary significance. The results shown here are for

�R x; �ð Þ ¼ – 1=�ð Þ cot – 1	v11, with 	 ¼ 4
 104 N m – 3.
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1.02.6 Elastic Displacement as a
Sum over Modes

We shall here assume that a catalog of normal mode
eigenfrequencies and scalar eigenfunctions has been
calculated. Rather than pursuing the inhomogenous
problem outlined in earlier sections we shall now
adopt the more classical approach, making use of

the orthogonality properties of the eigenfunctions
to expand the applied force distribution and to find
the modal excitations. The argument is strictly valid
only in the nonattenuating case. Attenuation is sub-
sequently included by introducing decay constants
associated with each mode. Recall that the eigenfre-

quencies !k and the eigenfunctions s(km) are solutions
of the eigenvalue problem

H s kmð Þ ¼ �!2
ks kmð Þ ½104�

It can be shown that the operator H is self adjoint
in the sense

Z

V

s9:H s d3x ¼
Z

V

s:H s 9 d3x ½105�

for any differentiable s(x), s9(x) satisfying the bound-
ary conditions for u in [24], where the volume
integration is over the entire Earth model. From this
it follows that the eigenfunctions s(km)(x) form a com-
plete set and that the eigenvalues !2

k are real. We can
also assume that they are positive, on the grounds that
the model should initially be in stable equilibrium. It is
not difficult to show that eigenfunctions belonging to
different eigenvalues are orthogonal or, in the case of
degeneracy, can be orthogonalized, in the sense
Z

V

�s k9m9ð Þ� ? s kmð Þd3x ¼ 0; when k 6¼ k9or m 6¼ m9 ½106�

It is straightforward to obtain a formal solution of the
equations of motion [35] in terms of a sum of eigen-
functions s(km). We expand the displacement field
u(x, t)

u x; tð Þ ¼
X

km

akm tð Þs kmð Þ xð Þ ½107�

where akm tð Þ are to be found. On substituting into
[35], multiplying by s k9m9ð Þ� and integrating, making
use of the orthogonality relation (106), we obtain

äkm tð Þ þ !2
kakm tð Þ ¼ !2

k fkm tð Þ ½108�

with

fkmðtÞ X
1

!2
k

Z

V

s kmð Þ�ðxÞ ? f x; tð Þd3x

Z

V

�s kmð Þ�ðxÞ ? sðkmÞ xð Þd3x

½109�

The ordinary differential equations [108] for each
akm(t) may be solved (e.g., using the method of ‘varia-
tion of parameters’ or Laplace transformation) to give

akm tð Þ ¼
Z t

–1
hk t – t 9ð Þ _f km t 9ð Þdt 9 ½110�

with

hkðtÞ ¼ 1 – cos!kt ½111�

a result due to Gilbert (1971). As pointed out by
Gilbert, this result needs to be modified to account
for attenuation by incorporating a decay factor
exp –	ktð Þ into the cosine term, and thus in place
of [111] we write

hkðtÞ ¼ 1 – e –	k t cos!kt ½112�
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Figure 4 The dispersion diagram for spheroidal modes to

30 mHz.

0 20 40 60 80 100 120
Angular order 

0

5

10

15

20

25

30

F
re

qu
en

cy
 (

m
H

z)

Figure 5 The dispersion diagram for toroidal modes to

30 mHz.
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where 	k is given in terms of the Q of the mode by
	k ¼ !k=2Qk .

Inserting the point source defined in [31], we
obtain

akm tð Þ ¼ 1

!2
k

Fi s
kmð Þ

i xsð Þ� þMij s
kmð Þ

i;j xsð Þ�
� 


hk tð Þ ½113�

assuming that eigenfunctions are normalized such
that

R
V
�s kmð Þ�ðxÞ ? sðkmÞðxÞd3x ¼ 1 .The eigenfunc-

tions are of the form [69] and thus it is a further
exercise in spherical harmonic analysis to reduce
the excitation coefficients, Ekm ¼ Fis

ðkmÞ
i ðxsÞ�þ

�

Mij s
ðkmÞ
i;j ðxsÞ�



, to forms involving the scalar eigen-

functions Uk,Vk,Wk and their derivatives. The result
has already been derived in [98], by a different route.
Similar formulas are also to be found in Gilbert and
Dziewonski (1975), Woodhouse and Girnius (1982),
and Dziewonski and Woodhouse (1983). Using [113]
in [107], we obtain the following expression for a
theoretical seismogram:

uðx; tÞ ¼
X

km

1

!2
k

EkmsðkmÞðxÞð1 – e –	k t cos!ktÞ ½114�

The argument of the previous section shows that
the correct form of this expression in the attenuating
case is

uðx; tÞ ¼
X

km
Re !k>0

Re
1

!2
k

EkmsðkmÞðxÞð1 – ei!k t Þ
� �

½115�

where !k is now the complex frequency, and skm is the
complex eigenfunction, having normalization [95].
Additional terms need to be added to [115] if it is
desired to include relaxation effects.

This rather simple formula is the key ingredient of
many seismological studies, as outlined in the intro-
duction. Mode catalogs for PREM (Dziewonski and
Anderson, 1981) exist up to 170 mHz (6 s period).
Figure 2 shows an example of such a synthetic seismo-
gram. For comparison, the observed seismogram is also
shown. The direct P and S surface reflected PP and SS
body waves are visible in both the synthetic and data
seismograms. At later times, the surface waves can be
observed. Differences between the synthetic and data
seismogram can be attributed to three-dimensional
structrue, which is not included in the calculation.

1.02.7 The Normal Mode Spectrum

Here we illustrate some of the properties of different
multiplets in the normal mode spectrum. One way to

gain understanding of the physical properties is

through the use of ‘differential kernels’ K(r). These

are, in essence, the derivatives of the eigenfrequency

of a given mode with respect to a structural change

at any radius. This takes the form of an integral

(cf. the chain rule applied to an infinite number

of independent variables). Differential kernels can

be defined, for example, corresponding to perturba-

tions in shear modulus and bulk modulus, at

fixed density, and these are related to the distribution

of elastic shear energy and compressional energy

with radius. Similarly, kernels can be defined corre-

sponding to anisotropic perturbations (see Chapter

1.16). Theoretical formulas for such kernels can be

found in, for example, Backus and Gilbert (1967), and

for anisotropic elastic parameters A, C, L, N, F in

Dziewonski and Anderson (1981). Such kernels are

a special case, in which the perturbation is spherically

symmetric, of the kernels that arise when a general

aspherical perturbation of the model is considered.

This will be further discussed in a later section. Here

we shall take relative perturbations in (isotropic)

P-velocity, vP, S-velocity, vS and density � (at con-

stant vP and vS) as the independent perturbations, and

write

�!k ¼
Z a

0

 

K� rð Þ ��ðrÞ
�ðrÞ þ KPðrÞ

�vPðrÞ
vPðrÞ

þ KSðrÞ
�vSðrÞ
vSðrÞ

!

dr ½116�

Our aim here is to use the kernels KP(r), KS(r) to give
insight into the nature of the mode in terms of its
traveling-wave content, and into how the P- and
S-velocity distributions can be constrained by mak-
ing observations of a given mode. The kernel K�(r)
(for constant vP and vS) gives information about how
the mode probes the density structure, adding to
information about vP and vS available from modes
but also from travel times.

Another way to gain insight into the physical
character of modes is by relating them to traveling

body waves and surface waves. The essential quanti-

tative connection between modes and traveling

waves is made by equating the horizontal wavelength

(or wave number) of the mode with the correspond-

ing horizontal wavelength (or wave number) of a

traveling wave. For modes, this wavelength can be

derived from the asymptotic properties of the sphe-

rical harmonics for large l. A point source at the pole
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� ¼ 0 excites only the modes having low azimuthal

order jmj4 2, as we have seen. For fixed m and large

l, we have (e.g., Abramowitz and Stegun, 1965)

Y 0m
l ð�; �Þ �

1

�

ffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

4�

r

ðsin �Þ – 1=2 cos l þ 1

2

� �
�

�

þ 1

2
m� –

1

4
�

	
eim� ½117�

where � plays the role of epicentral distance. Thus,
we can identify the horizontal wave number k (¼ 2�/
wavelength) to be

k ¼ l þ 1

2

� ��
a ½118�

The angular order l, therefore, is a proxy for wave
number k and dispersion diagrams such as those
shown in Figures 4 and 5 can be interpreted, for
large l, in the same way as are dispersion relations
!(k) for surface waves. In particular, we can define
phase velocity

cð!Þ ¼ !
k

½119�
and group velocity

Uð!Þ ¼ d!

dk
½120�

This defines the relationship between the !� l plane
and the dispersion properties of Love and Rayleigh
waves and their overtones, Love waves correspond-
ing to toroidal modes, and Rayleigh waves to
spheroidal modes.

In the case of body waves we may, similarly,
identify the horizontal wave number in terms of

frequency and ‘ray parameter’ p (Brune, 1964, 1966).

From classical ray theory in the spherical Earth, the

horizontal wave number at the Earth’s surface for a

monochromatic signal traveling along a ray with

given ray parameter p ¼ dT=d4 is

k ¼ !p

a
½121�

Therefore, using [118],

p ¼
l þ 1

2

!
½122�

Thus, a mode of angular order l and angular fre-
quency ! is associated with rays having the ray
parameter given by [122]. For toroidal modes, these
are S-rays, and for spheroidal modes they are both P-
and S-rays. It is well known that rays exist only for
ranges of depth for which

r

vPðrÞ
� p; for P-waves ½123�

r

vSðrÞ
� p; for S-waves ½124�

In the diagrams of Figures 7 and 8 the ranges of
depth for which these inequalities are satisfied are
indicated in two columns on the right-hand side of
each panel. The left column is for P-waves (relevant
only for spheroidal multiplets) and the right column
for S-waves.

Figure 6 shows the combined dispersion diagrams
for spheroidal and toroidal modes at low frequencies
(f4 3 MHz), an expanded version of the lower left
corner of the dispersion diagrams in Figures 4 and 5.
Lines connect modes of the same type (spheroidal or
toroidal) and the same overtone number n, and define
different branches of the dispersion curves. The ‘fun-
damental mode branch’ (n¼ 0) contains the modes
with the lowest frequency for each l. Modes with
n > 1 are called ‘overtones’. We will make a tour of
!� l space and use the eigenfunctions and differen-
tial kernels defined above to gain insight into the
nature of the different types of mode.

Figures 7–9 show eigenfunctions and differential
kernels for a number of toroidal and spheroidal
modes. By inspecting these diagrams, a few general
observations can be made. Moving up along a mode
branch (horizontal rows in Figures 7–9) will result in
eigenfunctions and kernels which are more concen-
trated toward the surface. This reflects the fact that,
for high l, the modes may be interpreted as surface
waves. Moving up in overtone number n, for constant
l (vertical columns in Figures 8 and 9), leads to
eigenfunctions that are more oscillatory and to sen-
sitivity kernels that penetrate more deeply.
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Figure 6 Eigenfrequencies of spheroidal (black circles)

and toroidal multiples (white circles) below 3 mHz for the
Preliminary Reference Model (PREM, Dziewonski and

Anderson, 1981). A multiplet with angular order l consists of

2l þ 1 singlets with azimuthal order m ¼ � l,� l þ 1,. . .,
l� 1,l. The branches are labeled by their overtone number n

(left spheroidal, right toroidal), the fundamental mode

branch is n ¼ 0.
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The wave motion of toroidal modes is purely
horizontal (see Figure 7), and thus these modes are

sensitive only to perturbations in S-velocity and
density and have no sensitivity to the core

(Figure 8). The differential kernels tell us how the
frequency of the mode will change if we increase the

spherical velocity or density at a certain depth. When
inspecting Figure 8, we find that increasing the shear

wave velocity at any depth in the mantle, will always
lead to an increase in toroidal mode frequency as the
KS(r) sensitivity kernel is always positive. For density,

however, we find that it depends on the depth of the
perturbation. For mode 0T2, for example, an increase

in density in the upper mantle will lead to a decrease
in frequency, while an increase in the lower mantle

will increase the frequency. When we move from the
fundamental to the overtones, we find that the den-

sity kernel K�(r) becomes oscillatory around zero
(see, e.g., the n¼ 5 overtones). These modes are

almost insensitive to smooth variations in density,
as the kernels will average to zero. The sensitivity

to desity also becomes smaller for larger l along the

same branch, which can clearly be seen when pro-

gressing from 0T2 to 0T10 along the fundamental
mode branch. This agrees well with the interpreta-

tion of shorter period toroidal modes in terms of

Love waves, which are also dominated by sensitivity
to shear wave velocity.

Figure 9 shows examples of sensitivity kernels for
the spheroidal modes. The spheroidal modes involve

wave motion in both horizontal and vertical direc-
tions, and so are sensitive to perturbations in density

and to both vP and vS. Again, moving to the right

along the fundamental mode branch shows that sen-

sitivities become progressively concentrated closer to
the surface. Spheroidal modes correspond to

Rayleigh waves and at higher l the largest sensitivity

is to shear wave velocity, similar to the toroidal
modes, except that peak sensitivity is reached at

subcrustal depths, making them less sensitive to

large variations in shear velocity in the crust than is
the case for toroidal modes. The overtones sample

Fundamental spheroidal branch

Fundamental toroidal branch

Surface

670

CMB

670 670

CMB CMB

0T10 Period = 619.9s Q = 173.2
Eigenfunction

Surface
0S10 Period = 579.2s Q = 327.8

Eigenfunction Surface
0S50 Period = 178.2s Q = 143.2

Eigenfunction Surface
0S100 Period = 97.6s Q = 118.0

Eigenfunction

0T50 Period = 164.6s Q = 131.1 0T100 Period = 86.5s Q = 139.2
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Surface Eigenfunction
670

Surface Eigenfunction
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Figure 7 Eigenfunctions of selected toroidal and spheroidal fundamental modes (n ¼ 0. For the toroidal modes, the dashed

lines show W(r), and for spheroidal modes the dashed lines denote V(r) and the solid lines U(r). At high angular order l the

toroidal modes correspond to Love waves and the spheroidal modes to Rayleigh waves.
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different families of modes. The mode 5S10 corre-
sponds to a Stoneley wave (the analog of a Rayleigh
wave, but at a fluid–solid interface, rather than at a
free surface), traveling along the inner-core bound-
ary. 1S10 is a mixture of a mantle mode and a Stoneley
wave at the core–mantle boundary. The other modes
in Figure 9 show a behavior similar to the toroidal
modes. Notice that for 5S50 the vp sensitivity decays
below the P-wave ray-theoretic turning point (the
point at which the shading terminates in the left
vertical stripe at the right of the plot), and the vS

sensitivity decays below the S-wave turning point.
The fact that, for a given ray parameter, S-waves turn
at greater depth than P-waves means that in
modeling there is some potential for shallow P-velo-
city structure to trade off with deep S-velocity
structure.

Figure 10 shows another family of spheroidal
modes, which are characterised by low l and high
overtone number n. These modes are the PKIKP
equivalent modes which have strong sensitivity to
core structure.
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Figure 8 Sensitivity kernels KS(r) (dashed lines) and K�(r) (dot-dashed lines) of selected toroidal modes.

56 Earth’s Free Oscillations



Fifth overtone, n = 5 
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Figure 9 Sensitivity kernels of selected spheroidal modes. KS(r) dashed, KP(r) solid, K�(r) dot-dash.
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Figure 10 Sensitivity kernels of selected PKIKP equivalent spheroidal modes.
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1.02.8 Normal Modes and
Theoretical Seismograms in
Three-Dimensional Earth Models

The problem of calculating theoretical seismograms

and spectra for three-dimensional models is a chal-

lenging one. A theoretically straightforward

formalism exists for such calculations, based on

expanding the wave field in terms of a complete set

of (vector) functions. The equations that arise from

requiring that the equations of motion be satisfied can

be regarded as exact matrix equations. However, they

are of infinite dimension, and even when truncated to

give a practicable method of solution, the calculations

require the manipulation and diagonalization of

extremely large matrices. If the expansion is carried

out in terms of the eigenfunctions of a spherical model

(that is close to reality), the process is simplified, as

the off-diagonal terms in the resulting matrices are

small, allowing some approximate schemes that are

much less cumber-some to be developed.
Let us take as our starting point in considering the

form that this theory takes the equation of motion in

operator from given in [35]. In the frequency domain

ðH – �!2Þu ¼ f ½125�

The Earth will be considered to be in a state of steady
rotation with angular velocity W about its center of
mass, so that the expression for H acquires additional
terms representing the Coriolis force and the centri-
fugal potential (Dahlen, 1968):

ðH uÞi ¼�
�
�1
;i þ �0 –

1

2
ð�k�kxl xl –�k�l xkxl Þ

� 	
;ij uj

þ 2i�ijk�j uk



– ð�jilkuk;l Þ;j ½126�

where, as previously, �1 is regarded as a functional of
u, by virtue of Poisson’s equation [22]. Let s(km)

represent the eigenfunctions of a spherical, nonrotat-
ing, nonattenuating reference model, with
eigenfrequencies !k so that

H 0sðkmÞ ¼ �0!
2
ksðkmÞ ½127�

satisfying the orthogonality relation
Z

V

�0sðk9m9Þ� ? sðkmÞ dV ¼ �k9k�m9m ½128�

Where H 0 and �0 are for the reference model, and let
us seek a solution of [125] in terms of an expansion

uðx; !Þ ¼
X

km

akmsðkmÞðxÞ ½129�

with coefficients akm to be found. Substituting into
[125], and then taking the dot product with s(k9m9)�

and integrating, we find
X

km

½ðk9m9jH 1 – �1!
2jkmÞ – ð!2 –!2

kÞ�k9k�m9m�akm

¼ ðk9m9jf Þ ½130�

where H 1¼ H � H 0, �1¼ �� �0, and where we have
introduced the notations ðk9m9jf Þ ¼

R
V

sðk9m9Þ� ? f dV ;

ðk9m9jH 1 – �1!
2jkmÞ ¼

R
V

sðk9m9Þ�ðH 1 – �1!
2ÞsðkmÞdV .

Equation [130] can be regarded as a matrix equation,
albeit of infinite dimension, in which rows and col-
umns of the matrix on the left side are labeled by
(k9, m9), (k, m), respectively and in which the rows of
the column on the right side are labeled by (k9, m9).
We can write

Cð!Þa ¼ 1

i!
E ½131�

where C is the matrix having matrix elements ðk9m9j
Cð!ÞjkmÞ ¼ ðk9m9jH 1 – �1!

2jkmÞ – ð!2 –!2
kÞ�k9k�m9m

and where E/i! is the column vector having ele-
ments ðk9m9jf Þ, the factor 1/i! being inserted to
reflect the assumed step-function time dependence
of the source, so that E, which has elements Ekm given
in [98], is independent of frequency. Hence the for-
mal solution is given by

a ¼ 1

i!
Cð!Þ – 1E ½132�

Recalling that we are thinking of the index k as
incorporating angular order l, overtone number n,
and the mode type (spheroidal or toroidal), the
matrix C(!) consists of blocks of dimension (2l9 þ 1)

 (2lþ 1), as row index m9 takes on values � l9 to l9

and column index m takes on values � l to l. Thus,
each block within C(!) relates two particular multi-
plets k, k9 of the spherical reference model. Because
the deviation from the spherical reference model is
regarded as small, the matrix elements in C are small,
except for the elements on the diagonal proportional
to !2 –!2

k . These diagonal terms are small for values
of ! close to !k, for a given multiplet k, but for other
diagonal blocks, corresponding to multiplets not
close in frequency to multiplet k, they are not small;
thus, the matrix is, mostly, diagonally dominant,
except for diagonal blocks corresponding to multi-
plets close in frequency to !. Of course, the complete
solution is to be obtained by substituting [132] into
[129] and then evaluating the inverse Fourier trans-
form; thus, we need to consider the behavior of the
solution as a function of complex variable !. In
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particular, we are interested in the singularities that
occur in the complex ! plane, as these will corre-
spond to the modes of the aspherical model, in much
the same way as the modes of the spherical model
correspond to singularities, in the frequency domain,
of the solution of the inhomogenous problem (eqn,
[93] and the related discussion). The singularities in
the solution [132] will be at the frequencies !¼!h,
say, for which there exists a non-trivial solution to
the homogeneous problem

Cð!hÞrh ¼ 0 ½133�

This is an eigenvalue problem for !h and the corre-
sponding right eigenvector rh. The eigenvalue
problem is of a nonstandard form, since the depen-
dence of C on the eigenvalue parameter �¼!2 say, is
not of the usual form C0��1. This is because, (1)
perturbations in density �1 introduce a more general
dependence on !2, (2) by virtue of attenuation, the
perturbations in the elastic parameters entering into
H 1 are dependent upon !, (3) the terms arising
from rotation depend upon !, rather than on !2.
The form of the solution as a sum over residues
arising from singularities at !¼!h can be obtained
by replacing the inverse Fourier transform by a sum-
mation over singularities h, and within the integrand
carrying out the replacement (Deuss and
Woodhouse, 2004; AL-Attar, 2007; cf. eqn [94]):

Cð!Þ – 1 ! i
rh1h

1hq!Cð!hÞrh

½134�

where 1h is the left-eigenvector (a ‘row’ rather than a
column), the solution of

1hCð!hÞ ¼ 0 ½135�

We are assuming here that [133] and [135] deter-
mine the right and left eigenvectors rh, lh uniquely,
up to multiplying factors, such factors being imma-

terial for the evaluation of the residue contribution

[134]. Thus, from [129] the solution in the time

domain can be written as

uðx; tÞ ¼ 2Re
X

hkm

1

!h

1h ? E

1hq!Cð!hÞrh


 ðkmjrhÞsðkmÞðxÞei!h t ½136�

where the notation (kmjrh) represents individual ele-
ments of the column rh. As previously,
the contribution from singularities in the left half of
the complex !-plane is incorporated by taking twice
the real part, the summation in [136] being taken
only for !k in the right half-plane.

In order to make use of this theory, it is necessary
to obtain expressions for the matrix elements
(k9m9jC(!)jkm) in terms of the perturbations in elastic
parameters, density, etc., and deviations of surfaces of
discontinuity from the spherically symmetric refer-
ence model. Fairly complete forms for these are
given by Woodhouse (1980a), omitting terms in ani-
sotropic parameters and in initial stress. For
anisotropic perturbations, see Chapter 1.16. The
basic method is to expand the perturbations in sphe-
rical harmonics, and then to evaluate the integrals of
triples of spherical harmonics using the formula,
derivable from [43] and [48]:

1

4�

Z �

–�

Z �

0

ðY N 9m9
l9 Þ�Y N 0m0

l0 Y Nm
l sin � d� d�

¼ ð – 1ÞN 9 –m9 l9 l0 l
–N 9 N 0 N

� �
l9 l9 l
–m9 m0 m

� �

ðN 9 ¼ N 0þ NÞ ½137�

The resulting form for the matrix elements can then
be written in the form

ðk9m9jCð!ÞjkmÞ ¼
X

l0m0

ð – 1Þ –m9 l9 l0 l
–m9 m0 m

� �


 ðk9jjCðl0m0Þð!ÞjjkÞ ½138�

where the so-called ‘reduced matrix element’ appear-
ing in the right side, itself defined by this equation, is
independent of m and m9. This particular form for the
dependence of the matrix elements on m and m9 is a
consequence of the Wigner–Eckart theorem (see
Edmonds (1960)). The expressions for the reduced
matrix elements take the form of radial integrals
involving pairs of scalar eigenfunctions, for multi-
plets k9 and k, and on the (l 0m0) component of the
spherical harmonic expansion of heterogeneity,
together with terms evaluated at boundaries corre-
sponding to the (l 0m0) components of the deflections
of the boundaries.

This is a fairly complete theory for the oscillations
of a general Earth model. Apart from the treatment of
aspherical boundary perturbations, which involves a
linearization of the boundary conditions, it is in prin-
ciple an exact theory (Woodhouse, 1983), provided
that coupling between all multiplets is taken into
account – that is, provided that the eigenvalue pro-
blem for !h includes all the blocks of the full matrix
C(!). Of course, the theory cannot be applied in its
full form, owing to the need to manipulate
infinite-dimensional matrices, and so a number of
approximate schemes have been developed. The
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simplest, and up to now most widely applied method

is to reduce the eigenvalue problem for !h to that for
a single diagonal block – the so-called ‘self-coupling’

approximation. In this case we focus on a single

multiplet, k, and reduce C(!) to the
(2lþ 1)
 (2lþ 1) block corresponding to multiplet

k. This is a justifiable approximation for the calcula-

tion of u(x,!) for frequencies near !k if the mode can
be considered ‘isolated’, which is to say that there are

no other modes nearby having significant coupling

terms. A precise statement of the conditions that need
to be satisfied for a mode to be considered isolated

has not, to our knowledge, been worked out but,

roughly speaking, it is necessary for the ratio
(k9m9jC(!)jkm)/(!k

2 �!9k
2) for all other multiplets k9

to be small, for ! near the frequency !k of the target

multiplet. In the self-coupling approximation the
dependence of C(!) can be linearized for frequencies

near !k: C !ð Þ � C !kð Þ þ C9 !kð Þ�!, and a

(2lþ 1)
 (2lþ 1) matrix eigenvalue problem is
obtained for �!:

½Cð!kÞ þ C9ð!kÞ�!�r ¼ 0 ½139�

having eigenvalues �!h, say. This can also be written,
to zeroth order, as

HðkÞr ¼ �!r ½140�

where the (2lþ 1)
 (2lþ 1) matrix H(k), called the
‘splitting matrix’ of the target multiplet, k, has ele-
ments (km9jH(k)jkm)¼ (km9jC(!k)jkm)/2!k. The
contribution to the right-hand side of [136] can be
written (Woodhouse and Girnius, 1982) as

ukðx; tÞ ¼Re
X

m9m

–
1

!2
k

expðiHðkÞtÞ
� 


mm9


 Ekm9s
ðkmÞðxÞei!k t ½141�

the matrix exponential arising from the identity

X2lþ1

h¼1

rhlh

1h ? rh

expði�!htÞ ¼ expðiHtÞ ½142�

Equation [141], which is directly comparable to the
result for the spherical reference model in [115], has
the simple interpretation that at time t¼ 0 the modes
are excited as they would be in the reference model,
as the matrix exponential is initially equal to the unit
matrix. (The static, time-independent terms are not
included, as we are considering an approximation
valid only in the spectral neighborhood of !k, the
frequency of the target multiplet.) With time, the
effective excitation exp(iH(k)t)Ek evolves on a slow

timescale characterized by the incremental eigenfre-
quencies �!h, the eigenvalues of H(k). In the
frequency domain, this leads to ‘splitting’ of the
degenerate eigenfrequency !k into 2lþ 1 ‘singlets’ –
hence the name ‘splitting matrix’ for H(k).

It is straightforward to set up the inverse problem
of estimating the splitting matrix for isolated multi-
plets using data spectra for many events. This is
simplified by recognizing that the (2lþ 1)
 (2lþ 1)
matrix H(k) is equivalent to a certain function on the
sphere, known as the ‘splitting function’ (Woodhouse
and Giardini, 1985). It can be shown that for scalar
perturbations from the reference model, such as �1,

1, �1, H(k) is expressible in terms of coefficients cl0m0

which represent the spherical harmonic expansion
coefficients of even degree l 0, and up to finite sphe-
rical harmonic degree l 04 2l by the expression

ðkm9jHðkÞjkmÞ ¼��km�m9m þ !k

X2l

l0¼0
l0even

Xl0

m0¼ – l0

ð – 1Þm9


 2l0þ 1

4�

� �1=2

ð2l þ 1Þ l l0 l
0 0 0

� �


 l l0 l
–m9 m0 m

� �
c
ðkÞ
l0m0 ½143�

where the first term is the effect of Coriolis forces
(Dahlen, 1968), �k being the (known) rotational split-
ting parameter for the multiplet. Thus, the inverse
problem for H(k) is equivalent to the estimation of
cl0m0. The function on the sphere

�ð�; �Þ ¼
X2l

l0¼0
l0even

Xl0

m0¼ – l0

c
ðkÞ
l0m0 
l Y

0m0
l0 ð�; �Þ ½144�

can be interpreted, at least for high-l modes, as the
even degree expansion of �!local/!k, in which �!local

is the eigenfrequency that a spherically symmetric
model would possess if its radial structure were the
same as the structure beneath the point (�,�) (Jordan,
1978). Only even degrees are present by virtue of the
fact that the first 3-j symbol in [143] vanishes for odd
values of l0. The splitting function leads to a two-
stage inversion for three-dimensional structure in
which stage 1 is to find the structure coefficients
cl 0m0
(k) that bring data and theoretical spectra into

agreement, using as many events and stations as are
available, and the stage 2 is to determine the struc-
tural perturbations needed to match the inferred
values of cl0m0

(k) . Stage 1 of the procedure is nonlinear,
owing to the fact that the relation between the syn-
thetics and cl0m0

(k) involves the exponential exp iH(k)t.
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Stage 2, on the other hand, is linear; cl0m0
(k) is related to

three-dimensional structural perturbations by inte-
grals involving known differential kernels. This is a
similar procedure to that commonly employed in
surface wave studies, in which one first determines
two-dimensional maps of phase velocity, over a range
of frequencies, and then uses these to infer the three-
dimensional structure perturbations needed to
explain the inferred phase velocity maps. The spec-
tral fitting approach using splitting function
coefficients cl0m0

(k) has been widely applied (e.g.,
Giardini et al., 1987, 1988; Ritzwoller et al., 1988; He
and Tromp, 1996; Resovsky and Ritzwoller, 1995,
1998; Romanowicz and Breger, 2000; Masters et al.,
2000).

Figure 11 shows an example of data and theore-
tical spectra using the self-coupling approximation,
and splitting function coefficients estimated from a
large collection of data. In the left panel the splitting
effects only of rotation and ellipticity are taken into
account, whereas in the right panel the estimated
splitting function has been used to calculate the syn-
thetic spectra. The distribution of singlets and their
excitations is known only by virtue of the inversion
itself. There is no possibility here of resolving the
singlets in individual spectra, but by modeling a large
collection of spectra, for many events and stations,
the underlying singlet distribution is unmasked. This
example illustrates the fact that there are large differ-
ences between data and synthetics prior to modeling,

indicating that long period spectra represent a rich
source of information about the Earth’s three-dimen-
sional structure.

The fact that in the self-coupling approximation
seismic spectra depend only upon the ‘even’ spherical
harmonic degrees of heterogeneity points to a short-
coming of the theory. Since spherical harmonics of
even degree are symmetric under point reflection in
the center of the Earth, self-coupling theory predicts
that the seismic spectra depend only upon the aver-
age structure between pairs of antipodal points. Thus,
the interaction, or coupling, of modes must be a key
effect for understanding wave phenomena that do not
have this symmetry property. The theory can be
straightforwardly extended to include the coupling
of groups of modes. The resulting method is known
as ‘quasi-degenerate perturbation theory’ (Dahlen,
1969; Luh, 1973, 1974; Woodhouse, 1980a), or
‘group coupling’. A small group of multiplets {k1, k2,
k3,. . .}, close in frequency, is selected, and the eigen-
value problem is reduced to that for the matrix
obtained from C(!) by selecting only the blocks
corresponding to the chosen multiplets. This pro-
blem can then be linearized in �!, relative to a
fiducial frequency in the chosen band, in much the
same way as in the case of self-coupling, outlined
above, the resulting matrix eigenvalue problem being
of dimension (2l1þ 1)þ (2l2þ 1)þ (2l3þ 1)þ 	 	 	.
The selected group of modes is said to form a
‘super-multiplet’. Resovsky and Ritzwoller (1995)
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Figure 11 Data and synthetic spectra for 0S6 for an earthquake in Bolivia. The time window is 5–70 h. The solid lines are the

observed phase (top) and amplitude spectrum (middle), and dashed lines are for the synthetic spectra. In the left diagram only
splitting due to rotation and ellipticity is taken into account, in the right diagram the estimated splitting function is used,

reducing the misfit variance ration for this record from 0.476 to 0.036. The distribution of singlets contributing to the synthetic
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have generalized the notion of the splitting function

and structure coefficients to include coupling

between pairs of multiplets, so that cl 0m0
(k) becomes

cl 0m0
(k1,k2), and have made estimates of such coefficients

from seismic spectra (see, e.g., Resovsky and Pestana

(2003)).
The splitting function approach has been used in

inversions for tomographic velocity models (Li et al.,

1991; Resovsky and Ritzwoller, 1999; Ishii and

Tromp, 1999). Some recent tomographic shear

wave velocity models such as S20RTS (Ritsema

et al., 1999), make use of splitting functions in addi-

tion to body wave, surface wave, and overtone data to

provide improved constraints on the low degree

structure. Splitting functions have also been used in

the discovery of inner-core anisotropy (Woodhouse

et al., 1986) and have provided constraints on the

possible rotation of the inner core (Sharrock and

Woodhouse, 1998; Laske and Masters, 1999).
The ‘self-coupling’ and ‘group coupling’ techni-

ques depend upon the assumption that further cross-

coupling is not needed to approximate the complete

solution, which as we have shown includes coupling

between all multiplets. Of course, full coupling cal-

culations cannot be done for a truly infinite set of

modes, but it is feasible at low frequencies to include

coupling between all multiplets below a specified

frequency. We shall call this ‘full coupling’. Deuss

and Woodhouse (2001) have compared the different

approximations used in computing normal mode

spectra, and have found that ‘self-coupling’ and

‘group coupling’ can be a poor approximation to

‘full coupling’, indicating that a more complete ver-

sion of the theory will need to be used in the future as

it is desired to constrain the three-dimensional dis-

tribution of parameters, such as density, attenuation,

and mantle anisotropy, on which the spectra depend

more subtly.
Figure 12 shows a comparison between data and

spectra calculated using the ‘self-coupling’ with those

resulting from a ‘full coupling’ calculation in which

the coupling of all 140 modes up to 3 mHz has been

included (see Deuss and Woodhouse, (2001) for

details of the calculation). The spheroidal modes

are clearly seen, and there is also signal for toroidal

mode 0T10 on the vertical component, which is due

to Coriolis coupling. There is reasonable agreement

between the data and full coupling synthetics, but the

differences between data and synthetics are compar-

able to the difference between the ‘self-coupling’ and

‘full coupling’ synthetics. It may be expected that

‘group coupling’ would be justified, and that coupling

among wide bands of modes can be ignored.

However, coupling on groups still shows significant

differences compared to ‘full coupling’ (see

Figure 13).
In principle, normal mode spectra can be inverted

directly to derive tomographic models, avoiding the

intermediate step of estimating the splitting function

coefficients (Li et al., 1991; Hara and Geller, 2000;

Kuo and Romanowicz, 2002). This leads to a one-

step inversion procedure in which model parameter
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time window is 5–45 h. The differences between full coupling and self-coupling are similar to the differences between the data
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Theoretical free oscillation spectra: The importance of wide band coupling. Geophysical Journal International 146: 833–842.
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adjustments that enable the data and theoretical spec-

tra to be brought into agreement are sought directly.
This scheme has the advantage that the full coupling

approach can be used for the solution of the forward

problem and for calculations of the derivatives
needed for formulating the inverse problem. Of

course, it has the disadvantage that a nonlinear
inverse problem needs to be solved within a large

model space, rather than being able to restrict the

nonlinear stage of inversion to the much smaller
number of parameters represented by splitting func-

tions. The calculations are also much more
burdensome in terms of computer time and memory.

This means that the splitting function technique is
still largely the preferred method in spectral fitting

studies; however, to investigate the large regions of

the spectrum where wide-band coupling is expected
to be significant, a final stage inversion involving full

coupling will be needed.
Significant theoretical work has been directed

toward developing methods able to give accurate

splitting and coupling results using a practicable

amount of computer time and memory (e.g.,
Lognonne and Romanowicz, 1990; Park, 1990;

Lognonne, 1991). Deuss and Woodhouse (2004)
have developed a technique for solving the full

coupling generalized eigenvalue problem [133],
[135] by an iterative technique, not requiring the

eigenvalue decomposition of very large matrices,

which is well suited to the accurate modeling of
small spectral segments. The first iteration of this

technique is similar to the ‘subspace projection
method’ of Park (1990), which similarly aims to

approximate full coupling effects while avoiding
the need to find the eigenvectors and eigenvalues
of very large matrices.

1.02.9 Concluding Discussion

The normal mode formalism provides a well-devel-
oped theoretical framework for the calculation of
theoretical seismograms in both spherically sym-
metric and three-dimensional Earth models. For
spherically symmetric models, the ability to simply
and quickly calculate complete theoretical seismo-
grams plays an important role in the formulation and
solution of many seismological problems involving
both surface waves and long period body waves. In
the three-dimensional case, the theory of mode cou-
pling is too cumbersome to be applied in full, but it
enables a number of useful approximations to be
developed and tested. The increasing capacity in
high-performance computing means that it becomes
possible to develop and test increasingly more com-
plete implementations of the fully coupled theory.
Progress on fully numerical solutions for seismic
wave fields in realistic three-dimensional spherical
models (Komatitsch and Tromp, 2002a, 2002b), while
it is providing a new and invaluable tool in many
areas of global seismology, has not yet made it pos-
sible to calculate accurate very long period spectra.
In part, this is because a way has not (yet?) been
found to fully implement self-gravitation in the spec-
tral element method, and in part because the small
time step needed in finite difference and spectral
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Deuss and Woodhouse (2001). The time window is 5–80 h. All modes in the frequency interval shown were allowed to couple
for the group coupling calculations; the full coupling calculation includes all modes up to 3 mHz.
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element calculations leads to very long execution
times; also, there are very stringent limits on the
tolerable amount of numerical dispersion in the
solution.

Long period modal spectra constitute a rich
source of information on long wavelength heteroge-
neity, studies to date, we believe, having only
scratched the surface. To realize the potential of
this information will require large-scale coupling
calculations or, possibly, other methods for calculat-
ing very long period wave fields yet to be developed.
This will make it possible to bring modal spectral
data increasingly to bear on furthering our under-
standing of the Earth’s three-dimensional structure.
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