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Glossary
deflection of the vertical Angle between direction

of gravity and direction of normal gravity.

density moment Integral over the volume of a

body of the product of its density and integer

powers of Cartesian coordinates.

disturbing potential The difference between

Earth’s gravity potential and the normal potential.

eccentricity The ratio of the difference of squares

of semimajor and semiminor axes to the square of

the semimajor axis of an ellipsoid.

ellipsoid Surface formed by rotating an ellipse

about its minor axis.

equipotential surface Surface of constant

potential.

flattening The ratio of the difference between

semimajor and semiminor axes to the semimajor

axis of an ellipsoid.

geodetic reference system Normal ellipsoid with

defined parameters adopted for general geodetic

and gravimetric referencing.

geoid Surface of constant gravity potential that

closely approximates mean sea level.

geoid undulation Vertical distance between the

geoid and the normal ellipsoid, positive if the geoid

is above the ellipsoid.

geopotential number Difference between gravity

potential on the geoid and gravity potential at a

point.

gravitation Attractive acceleration due to mass.

gravitational potential Potential due to gravita-

tional acceleration.

gravity Vector sum of gravitation and centrifugal

acceleration due to Earth’s rotation.

gravity anomaly The difference between Earth’s

gravity on the geoid and normal gravity on the
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3.02.1 Introduction

Gravitational potential theory has its roots in the late
Renaissance period when the position of the Earth in
the cosmos was established on modern scientific
(observation-based) grounds. A study of Earth’s grav-
itational field is a study of Earth’s mass, its influence
on near objects, and lately its redistributing transport
in time. It is also fundamentally a geodetic study of
Earth’s shape, described largely (70%) by the surface
of the oceans. This initial section provides a historical
backdrop to potential theory and introduces some
concepts in physical geodesy that set the stage for
later formulations.

3.02.1.1 Historical Notes

Gravitation is a physical phenomenon so pervasive
and incidental that humankind generally has taken it
for granted with scarcely a second thought. The
Greek philosopher Aristotle (384–322 BC) allowed
no more than to assert that gravitation is a natural
property of material things that causes them to fall

(or rise, in the case of some gases), and the more
material the greater the tendency to do so. It was
enough of a self-evident explanation that it was not
yet to receive the scrutiny of the scientific method,
the beginnings of which, ironically, are credited to
Aristotle. Almost 2000 years later, Galileo Galilei
(1564–1642) finally took up the challenge to under-
stand gravitation through observation and scientific
investigation. His experimentally derived law of fall-
ing bodies corrected the Aristotelian view and
divorced the effect of gravitation from the mass of
the falling object – all bodies fall with the same
acceleration. This truly monumental contribution to
physics was, however, only a local explanation of
how bodies behaved under gravitational influence.
Johannes Kepler’s (1571–1630) observations of pla-
netary orbits pointed to other types of laws,
principally an inverse-square law according to
which bodies are attracted by forces that vary with
the inverse square of distance. The genius of Issac
Newton (1642–1727) brought it all together in his
Philosophiae Naturalis Principia Mathematica of 1687
with a single and simple all-embracing law that in

ellipsoid, either as a difference in vectors or a dif-

ference in magnitudes.

gravity disturbance The difference between

Earth’s gravity and normal gravity, either as a dif-

ference in vectors or a difference in magnitudes.

gravity potential Potential due to gravity

acceleration.

harmonic function Function that satisfies

Laplace’s field equation.

linear eccentricity The distance from the center of

an ellipsoid to either of its foci.

mean Earth ellipsoid Normal ellipsoid with para-

meters closest to actual corresponding parameters

for the Earth.

mean tide geoid Geoid with all time-varying tidal

effects removed.

multipoles Stokes coefficients.

Newtonian potential Harmonic function that

approaches the potential of a point mass at infinity.

non-tide geoid Mean tide geoid with all (direct

and indirect deformation) mean tide effects

removed.

normal ellipsoid Earth-approximating reference

ellipsoid that generates a gravity field in which it is a

surface of constant normal gravity potential.

normal gravity Gravity associated with the normal

ellipsoid.

normal gravity potential Gravity potential asso-

ciated with the normal ellipsoid.

orthometric height Distance along the plumb line

from the geoid to a point.

potential Potential energy per unit mass due to the

gravitational field; always positive and zero at

infinity.

sectorial harmonics Surface spherical harmonics

that do not change in sign with respect to latitude.

Stokes coefficients Constants in a series expan-

sion of the gravitational potential in terms of

spherical harmonic functions.

surface spherical harmonics Basis functions

defined on the unit sphere, comprising products of

normalized associated Legendre functions and

sinusoids.

tesseral harmonics Neither zonal nor sectorial

harmonics.

zero-tide geoid Mean tide geoid with just the

mean direct tidal effect removed (indirect effect due

to Earth’s permanent deformation is retained).

zonal harmonics Spherical harmonics that do not

depend on longitude.
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one bold stroke explained the dynamics of the entire
universe (today there is more to understanding the
dynamics of the cosmos, but Newton’s law remark-
ably holds its own). The mass of a body was again an
essential aspect, not as a self-attribute as Aristotle had
implied, but as the source of attraction for other
bodies: each material body attracts every other mate-
rial body according to a very specific rule (Newton’s
law of gravitation; see Section 3.02.2). Newton
regretted that he could not explain exactly why
mass has this property (as one still yearns to know
today within the standard models of particle and
quantum theories). Even Albert Einstein (1879–
1955) in developing his general theory of relativity
(i.e., the theory of gravitation) could only improve on
Newton’s theory by incorporating and explaining
action at a distance (gravitational force acts with the
speed of light as a fundamental tenet of the theory).
What actually mediates the gravitational attraction
still intensely occupies modern physicists and
cosmologists.

Gravitation since its early scientific formulation
initially belonged to the domain of astronomers, at
least as far as the observable universe was concerned.
Theory successfully predicted the observed perturba-
tions of planetary orbits and even the location of
previously unknown new planets (Neptune’s discov-
ery in 1846 based on calculations motivated by
observed perturbations in Uranus’ orbit was a major
triumph for Newton’s law). However, it was also dis-
covered that gravitational acceleration varies on
Earth’s surface, with respect to altitude and latitude.
Newton’s law of gravitation again provided the back-
drop for the variations observed with pendulums. An
early achievement for his theory came when he suc-
cessfully predicted the polar flattening in Earth’s shape
on the basis of hydrostatic equilibrium, which was
confirmed finally (after some controversy) with geo-
detic measurements of long triangulated arcs in 1736–
37 by Pierre de Maupertuis and Alexis Clairaut.
Gravitation thus also played a dominant role in geo-
desy, the science of determining the size and shape of
the Earth, promulgated in large part by the father of
modern geodesy, Friedrich R. Helmert (1843–1917).

Terrestrial gravitation through the twentieth cen-
tury was considered a geodetic area of research,
although, of course, its geophysical exploits should
not be overlooked. But the advancement in modeling
accuracy and global application was promoted
mainly by geodesists who needed a well-defined
reference for heights (a level surface) and whose
astronomic observations of latitude and longitude

needed to be corrected for the irregular direction of
gravitation. Today, the modern view of a height
reference is changing to that of a geometric, mathe-
matical surface (an ellipsoid) and three-dimensional
coordinates (latitude, longitude, and height) of points
on the Earth’s surface are readily obtained geometri-
cally by ranging to the satellites of the Global
Positioning System (GPS). The requirements of
gravitation for GPS orbit determination within an
Earth-centered coordinate system are now largely
met with existing models. Improvements in gravita-
tional models are motivated in geodesy primarily for
rapid determination of traditional heights with
respect to a level surface. These heights, for example,
the orthometric heights, in this sense then become
derived attributes of points, rather than their cardinal
components.

Navigation and guidance exemplify a further spe-
cific niche where gravitation continues to find
important relevance. While GPS also dominates
this field, the vehicles requiring completely autono-
mous, self-contained systems must rely on inertial
instruments (accelerometers and gyroscopes). These
do not sense gravitation (see Section 3.02.6.1), yet
gravitation contributes to the total definition of the
vehicle trajectory, and thus the output of inertial
navigation systems must be compensated for the
effect of gravitation. By far the greatest emphasis in
gravitation, however, has shifted to the Earth
sciences, where detailed knowledge of the configura-
tion of masses (the solid, liquid, and atmospheric
components) and their transport and motion leads
to improved understanding of the Earth systems (cli-
mate, hydrologic cycle, tectonics) and their
interactions with life. Oceanography, in particular,
also requires a detailed knowledge of a level surface
(the geoid) to model surface currents using satellite
altimetry. Clearly, there is an essential temporal
component in these studies, and, indeed, the tem-
poral gravitational field holds center stage in many
new investigations. Moreover, Earth’s dynamic beha-
vior influences point coordinates and Earth-fixed
coordinate frames, and we come back to fundamental
geodetic concerns in which the gravitational field
plays an essential role!

This section deals with the static gravitational
field. The theory of the potential from the classical
Newtonian standpoint provides the foundation for
modeling the field and thus deserves the focus of
the exposition. The temporal part is a natural exten-
sion that is readily achieved with the addition of the
time variable (no new laws are needed, if we neglect
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general relativistic effects) and will not be expounded
here. We are primarily concerned with gravitation on
and external to the solid and liquid Earth since this is
the domain of most applications. The internal field
can also be modeled for specialized purposes (such as
submarine navigation), but internal geophysical
modeling, for example, is done usually in terms of
the sources (mass density distribution), rather than
the resulting field.

3.02.1.2 Coordinate Systems

Modeling the Earth’s gravitational field depends on
the choice of coordinate system. Customarily, owing
to the Earth’s general shape, a spherical polar coor-
dinate system serves for most applications, and
virtually all global models use these coordinates.
However, the Earth is slightly flattened at the poles,
and an ellipsoidal coordinate system has also been
advocated for some near-Earth applications. We note
that the geodetic coordinates associated with a geo-
detic datum (based on an ellipsoid) are never used in
a foundational sense to model the field since they do
not admit to a separation-of-variables solution of
Laplace’ differential equation (Section 3.02.4.1).

Spherical polar coordinates, described with the
aid of Figure 1, comprise the spherical colatitude,
�, the longitude, �, and the radial distance, r. Their
relation to Cartesian coordinates is

x ¼ r sin � cos�

y ¼ r sin � sin�

z ¼ r cos �

½1�

Considering Earth’s polar flattening, a better
approximation, than a sphere, of its (ocean) surface
is an ellipsoid of revolution. Such a surface is

generated by rotating an ellipse about its minor axis
(polar axis). The two focal points of the best-fitting,
Earth-centered ellipsoid (ellipse) are located in the
equator about E¼ 522 km from the center of the
Earth. A given ellipsoid, with specified semiminor
axis, b, and linear eccentricity, E, defines the set of
ellipsoidal coordinates, as described in Figure 2. The
longitude is the same as in the spherical case. The
colatitude, �, is the complement of the so-called
reduced latitude; and the distance coordinate, u, is
the semiminor axis of the confocal ellipsoid through
the point in question. We call �; �; uð Þ ellipsoidal
coordinates; they are also known as spheroidal coor-
dinates, or Jacobi ellipsoidal coordinates. Their
relation to Cartesian coordinates is given by

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ E2
p

sin � cos�

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ E2
p

sin � sin�

z ¼ u cos �

½2�

Points on the given ellipsoid all have u ¼ b; and, all
surfaces, u ¼ constant, are confocal ellipsoids (the
analogy to the spherical case, when E ¼ 0, should
be evident).

3.02.1.3 Preliminary Definitions and
Concepts

The gravitational potential, V, of the Earth is gener-
ated by its total mass density distribution. For
applications on the Earth’s surface it is useful to
include the potential, �, associated with the centrifu-
gal acceleration due to Earth’s rotation. The sum,
W ¼ V þ �, is then known, in geodetic terminology,
as the gravity potential, distinct from gravitational
potential. It is further advantageous to define a rela-
tively simple reference potential, or normal potential,
that accounts for the bulk of the gravity potential

x

y

z

r
θ

λ

Figure 1 Spherical polar coordinates.

x

z

E

Confocal ellipsoid

Sphereu

b

δ

Figure 2 Ellipsoidal coordinates.
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(Section 3.02.5.2). The normal gravity potential, U, is

defined as a gravity potential associated with a best-

fitting ellipsoid, the normal ellipsoid, which rotates

with the Earth and is also a surface of constant

potential in this field. The difference between the

actual and the normal gravity potentials is known as

the disturbing potential: T ¼ W –U ; it thus excludes

the centrifugal potential. The normal gravity poten-

tial accounts for approximately 99.999 5% of the total

potential.
The gradient of the potential is an acceleration,

gravity or gravitational acceleration, depending on

whether or not it includes the centrifugal accelera-

tion. Normal gravity, �, comprises 99.995% of the

total gravity, g, although the difference in magni-

tudes, the gravity disturbance, dg , can be as large as

several parts in 104. A special kind of difference,

called the gravity anomaly, �g , is defined as the

difference between gravity at a point, P, and normal

gravity at a corresponding point, Q, where WP ¼ UQ ,

and P and Q are on the same perpendicular to the

normal ellipsoid.
The surface of constant gravity potential, W0, that

closely approximates mean sea level is known as the

geoid. If the constant normal gravity potential, U0, on

the normal ellipsoid is equal to the constant gravity

potential of the geoid, then the gravity anomaly on the

geoid is the difference between gravity on the geoid

and normal gravity on the ellipsoid at respective points,

P0, Q0, sharing the same perpendicular to the ellipsoid.

The separation between the geoid and the ellipsoid is

known as the geoid undulation, N, or also the geoid

height (Figure 3). A simple Taylor expansion of the

normal gravity potential along the ellipsoid perpendi-

cular yields the following important formula:

N ¼ T

�
½3�

This is Bruns’ equation, which is accurate to a
few millimeters in N, and which can be extended to

N ¼ T=� – W0 –U0ð Þ=� for the general case,

W0 6¼ U0. The gravity anomaly (on the geoid) is the

gravity disturbance corrected for the evaluation of

normal gravity on the ellipsoid instead of the geoid.

This correction is N q�=qh ¼ q�=qhð Þ T=�ð Þ,
where h is height along the ellipsoid perpendicular.

We have �g ¼ – qT=qh, and hence

�g ¼ –
qT

qh
þ 1

�

q�
qh

T ½4�

The slope of the geoid with respect to the ellip-
soid is also the angle between the corresponding

perpendiculars to these surfaces. This angle is

known as the deflection of the vertical, that is, the

deflection of the plumb line (perpendicular to the

geoid) relative to the perpendicular to the normal

ellipsoid. The deflection angle has components, �, �,

respectively, in the north and east directions. The

spherical approximations to the gravity disturbance,

anomaly, and deflection of the vertical are given by

�g ¼ –
qT

qr
; �g ¼ –

qT

qr
–

2

r
T

� ¼ 1

�

qT

rq�
; � ¼ –

1

�

qT

r sin � q�

½5�

where the signs on the derivatives are a matter of
convention.

3.02.2 Newton’s Law of Gravitation

In its original form, Newton’s law of gravitation

applies only to idealized point masses. It describes

the force of attraction, F, experienced by two such

solitary masses as being proportional to the product

of the masses, m1 and m2; inversely proportional to

the distance, ,, between them; and directed along the

line joining them:

F ¼ G
m1m2

,2 n ½6�

G is a constant, known as Newton’s gravitational
constant, that takes care of the units between the
left- and right-hand sides of the equation; it can be

H, orthometric
height  

Topographic
surface

Ellipsoid

Geoid
N, geoid undulation

ellipsoidal 
height, h

g

Deflection of
the vertical 

P0

Q0

W = W0

U = U0

P

P0

Q0

Ellipsoidal
height, h  

Figure 3 Relative geometry of geoid and ellipsoid.
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determined by experiment and the current best value
is (Groten, 2004):

G ¼ 6:67259� 0:00030ð Þ � 10 – 11 m3 kg – 1 s – 2 ½7�

The unit vector n in eqn [6] is directed from either
point mass to the other, and thus the gravitational force
is attractive and applies equally to one mass as the
other. Newton’s law of gravitation is universal as far as
we know, requiring reformulation only in Einstein’s
more comprehensive theory of general relativity
which describes gravitation as a characteristic curva-
ture of the space–time continuum (Newton’s
formulation assumes instantaneous action and differs
significantly from the general relativistic concept only
when very large velocities or masses are involved).

We can ascribe a gravitational acceleration to the
gravitational force, which represents the acceleration
that one mass undergoes due to the gravitational
attraction of the other. Specifically, from the law of
gravitation, we have (for point masses) the gravita-
tional acceleration of m1 due to the gravitational
attraction of m2:

g ¼ G
m2

,2 n ½8�

The vector g is independent of the mass, m1, of the
body being accelerated (which Galileo found by
experiment).

By the law of superposition, the gravitational
force, or the gravitational acceleration, due to many
point masses is the vector sum of the forces or accel-
erations generated by the individual point masses.
Manipulating vectors in this way is certainly feasible,
but fortunately a more appropriate concept of grav-
itation as a scalar field simplifies the treatment of
arbitrary mass distributions.

This more modern view of gravitation (already
adopted by Gauss (1777–1855) and Green
(1793–1841)) holds that it is a field having a gravita-
tional potential. Lagrange (1736–1813) fully
developed the concept of a field, and the potential,
V, of the gravitational field is defined in terms of the
gravitational acceleration, g, that a test particle would
undergo in the field according to the equation

�V ¼ g ½9�

where � is the gradient operator (a vector). Further
elucidation of gravitation as a field grew from
Einstein’s attempt to incorporate gravitation into his
special theory of relativity where no reference frame
has special significance above all others. It was neces-
sary to consider that gravitational force is not a real

force (i.e., it is not an applied force, like friction or
propulsion) – rather, it is known as a kinematic force,
that is, one whose action is proportional to the mass
on which it acts (like the centrifugal force; see
Martin, 1988). Under this precept, the geometry of
space is defined intrinsically by the gravitational
fields contained therein.

We continue with the classical Newtonian poten-
tial, but interpret gravitation as an acceleration
different from the acceleration induced by real,
applied forces. This becomes especially important
when considering the measurement of gravitation
(Section 3.02.6.1). The gravitational potential, V, is a
‘scalar’ function, and, as defined here, V is derived
directly on the basis of Newton’s law of gravitation.
To make it completely consistent with this law and
thus declare it a Newtonian potential, we must
impose the following conditions:

lim
,!1

,V ¼ Gm and lim
,!1

V ¼ 0 ½10�

Here, m is the attracting mass, and we say that the
potential is regular at infinity. It is easy to show that
the gravitational potential at any point in space
due to a point mass, in order to satisfy eqns
[8]–[10], must be

V ¼ Gm

,
½11�

where, again, , is the distance between the mass and
the point at which the potential is expressed. Note
that V for , ¼ 0 does not exist in this case; that is, the
field of a point mass has a singularity. We use here
the convention that the potential is always
positive (in contrast to physics, where it is usually
defined to be negative, conceptually closer to poten-
tial energy).

Applying the law of superposition, the gravita-
tional potential of many point masses is the sum of
the potentials of the individual points (see Figure 4):

VP ¼ G
X

j

m j

,j

½12�

And, for infinitely many points in a closed, bounded
region with infinitesimally small masses, dm, the
summation in eqn [12] changes to an integration,

VP ¼ G

Z

mass

dm

,
½13�

or, changing variables (i.e., units), dm ¼ 	 dv, where
	 represents density (mass per volume) and dv is a
volume element, we have (Figure 5)
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VP ¼ G

ZZ Z

volume

	

,
dv ½14�

In eqn [14], , is the distance between the evalua-
tion point, P, and the point of integration. In spherical
polar coordinates (Section 3.02.1.2), these points
are �; �; rð Þ and �9; �9; r 9ð Þ, respectively. The
volume element in this case is given by
dv¼ r92 sin �9 d�9 d�9 dr9. V and its first derivatives
are continuous everywhere – even in the case that
P is on the bounding surface or inside the mass
distribution, where there is the apparent singularity
at , ¼ 0. In this case, by changing to a coordinate
system whose origin is at P, the volume element
becomes dv¼ ,2 sinc d
 dc d, (for some different
colatitude and longitude c and 
); and, clearly, the
singularity disappears – the integral is said to be
weakly singular.

Suppose the density distribution over the volume
depends only on radial distance (from the center of
mass): 	 ¼ 	 r 9ð Þ, and that P is an exterior evaluation
point. The surface bounding the masses necessarily is
a sphere (say, of radius, R) and because of the

spherically symmetric density we may choose the
integration coordinate system so that the polar axis
passes through P. Then

, ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r 92 þ r 2 – 2r 9r cos �9
p

; d, ¼ 1

,
r 9r sin �9d�9

½15�

It is easy to show that with this change of variables
(from � to ,) the integral [14] becomes simply

V �; �; rð Þ ¼ GM

r
; r � R ½16�

where M is the total mass bounded by the sphere.
This shows that to a very good approximation
the external gravitational potential of a planet such
as the Earth (with concentrically layered density) is
the same as that of a point mass.

Besides volumetric mass (density) distributions, it
is of interest to consider surface distributions.
Imagine an infinitesimally thin layer of mass on a
surface, s, where the units of density in this case are
those of mass per area. Then, analogous to eqn [14],
the potential is

VP ¼ G

Z Z

s

	

,
ds ½17�

In this case, V is a continuous function everywhere,
but its first derivatives are discontinuous at the sur-
face. Or, one can imagine two infinitesimally close
density layers (double layer, or layer of mass dipoles),
where the units of density are now those of mass per
area times length. It turns out that the potential
in this case is given by (see Heiskanen and Moritz,
1967, p. 8)

VP ¼ G

Z Z

s

	
q
qn

1

,

� �

ds ½18�

where q=qn is the directional derivative along the
perpendicular to the surface (Figure 5). Now, V itself
is discontinuous at the surface, as are all its derivatives.
In all cases, V is a Newtonian potential, being derived
from the basic formula [11] for a point mass that
follows from Newton’s law of gravitation (eqn [6]).

The following properties of the gravitational
potential are useful for subsequent expositions.
First, consider Stokes’s theorem, for a vector func-
tion, f, defined on a surface, s :

Z Z

s

r� fð Þ ? n ds ¼
I

p

f ? dr ½19�

where p is any closed path in the surface, n is the unit
vector perpendicular to the surface, and dr is a

l

P
n

s

dv

ρ

Figure 5 Continuous density distribution.

x

y

z

m1

m2

m3

mj

l1

l2

l3

lj

P

Figure 4 Discrete set of mass points (superposition

principle).
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differential displacement along the path. From eqn
[9], we find

r� g ¼ 0 ½20�

since r � r ¼ 0; hence, applying Stokes’s theo-
rem, we find with F ¼ mg that

w ¼
I

F ? ds ¼ 0 ½21�

That is, the gravitational field is conservative: the
work, w, expended in moving a mass around a closed
path in this field vanishes. In contrast, dissipating
forces (real forces!), like friction, expend work or
energy, which shows again the special nature of the
gravitational force.

It can be shown (Kellogg, 1953, p. 156) that the
second partial derivatives of a Newtonian potential,

V, satisfy the following differential equation, known

as Poisson’s equation:

r2V ¼ – 4�G	 ½22�

where r2 ¼ � ? � formally is the scalar product of
two gradient operators and is called the Laplacian
operator. In Cartesian coordinates, it is given by

r2 ¼ q2

qx2
þ q2

qy2
þ q2

qz2
½23�

Note that the Laplacian is a scalar operator. Eqn [22] is
a local characterization of the potential field, as
opposed to the global characterization given by eqn
[14]. Poisson’s equation holds wherever the mass den-
sity, 	, satisfies certain conditions similar to continuity
(Hölder conditions; see Kellogg, 1953, pp. 152–153). A
special case of eqn [22] applies for those points where
the density vanishes (i.e., in free space); then Poisson’s
equation turns into Laplace’ equation,

r2V ¼ 0 ½24�

It is easily verified that the point mass potential
satisfies eqn [24], that is,

r2 1

,

� �

¼ 0 ½25�

where , ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x – x 0ð Þ2þ y – y 0ð Þ2þ z – z 0ð Þ2
q

and the
mass point is at x9; y9; z9ð Þ.

The solutions to Laplace’ equation [24] (that is,
functions that satisfy Laplace’ equations) are known

as harmonic functions (here, we also impose the

conditions [10] on the solution, if it is a Newtonian

potential and if the mass-free region includes infi-

nity). Hence, every Newtonian potential is a

harmonic function in free space. The converse is
also true: every harmonic function can be repre-
sented as a Newtonian potential of a mass
distribution (Section 3.02.3.1).

Whether as a volume or a layer density distribu-
tion, the corresponding potential is the sum or
integral of the source value multiplied by the inverse
distance function (or its normal derivative for the
dipole layer). This function depends on both the
source points and the computation point and is
known as a Green’s function. It is also known as the
‘kernel’ function of the integral representation of the
potential. Functions of this type also play a dominant
role in representing the potential as solutions to
boundary-value problems (BVPs), as shown in sub-
sequent sections.

3.02.3 Boundary-Value Problems

If the density distribution of the Earth’s interior and
the boundary of the volume were known, then the
problem of determining the Earth’s gravitational
potential field is solved by the volume integral of
eqn [14]. In reality, of course, we do not have access
to this information, at least not the density, with
sufficient detail. (The Preliminary Reference Earth
Model (PREM), of Dziewonsky and Anderson
(1981), still in use today by geophysicists, represents
a good profile of Earth’s radial density, but does not
attempt to model in detail the lateral density hetero-
geneities.) In this section, we see how the problem of
determining the exterior gravitational potential can
be solved in terms of surface integrals, thus making
exclusive use of accessible measurements on the
surface.

3.02.3.1 Green’s Identities

Formally, eqn [24] represents a partial differential
equation for V. Solving this equation is the essence
of the determination of the Earth’s external gravita-
tional potential through potential theory. Like any
differential equation, a complete solution is obtained
only with the application of boundary conditions,
that is, imposing values on the solution that it must
assume at a boundary of the region in which it is
valid. In our case, the boundary is the Earth’s surface
and the exterior space is where eqn [24] holds (the
atmosphere and other celestial bodies are neglected
for the moment). In order to study the solutions to
these BVPs (to show that solutions exist and are
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unique), we take advantage of some very important
theorems and identities. It is noted that only a rather
elementary introduction to BVPs is offered here with

no attempt to address the much larger field of solu-
tions to partial differential equations.

The first, seminal result is Gauss’ divergence the-
orem (analogous to Stokes’ theorem, eqn [19]),

ZZ Z

v

r ? f dv ¼
Z Z

s

fn ds ½26�

where f is an arbitrary (differentiable) vector func-
tion and fn¼ n ? f is the component of f along the
outward unit normal vector, n (see Figure 5). The
surface, s, encloses the volume, v. Equation [26] says
that the sum of how much f changes throughout the
volume, that is, the net effect, ultimately, is equiva-
lent to the sum of its values projected orthogonally
with respect to the surface. Conceptually, a volume
integral thus can be replaced by a surface integral,
which is important since the gravitational potential is
due to a volume density distribution that we do not
know, but we do have access to gravitational quan-
tities on a surface by way of measurements.

Equation [26] applies to general vector functions
that have continuous first derivatives. In particular,

let U and V be two scalar functions having continuous
second derivatives, and consider the vector function
f¼U�V. Then, since n ? � ¼ q=qn, and

r? UrVð Þ ¼ rU ?rV þ Ur2V ½27�

we can apply Gauss’ divergence theorem to get
Green’s first identity,

ZZ Z

v

rU ?rV þ Ur2V
� �

dv ¼
Z Z

s

U
qV

qn
ds ½28�

Interchanging the roles of U and V in eqn [28], one
obtains a similar formula, which, when subtracted
from eqn [28], yields Green’s second identity,

ZZ Z

v

U r2V –V r2U
� �

dv ¼
Z Z

s

U
qV

qn
–V

qU

qn

� �

ds

½29�

This is valid for any U and V with continuous deri-
vatives up to second order.

Now let U ¼ 1=,, where , is the usual distance
between an integration point and an evaluation point.
And, suppose that the volume, v, is the space exterior

to the Earth (i.e., Gauss’ divergence theorem applies
to any volume, not just volumes containing a mass
distribution). With reference to Figure 6, consider
the evaluation point, P, to be inside the volume (free

space) that is bounded by the surface, s; P is thus

outside the Earth’s surface. Let V be a solution to eqn

[24], that is, it is the gravitational potential of the

Earth. From the volume, v, exclude the volume

bounded by a small sphere, �, centered at P. This

sphere becomes part of the surface that bounds the

volume, v. Then, since U, by our definition, is a point

mass potential, r2U ¼ 0 everywhere in v (which

excludes the interior of the small sphere around P);

and, the second identity [29] gives

Z Z

s

1

,

qV

qn
–V

q
qn

1

,

� �� �

ds

þ
Z Z

�

1

,

qV

qn
–V

q
qn

1

,

� �� �

d� ¼ 0 ½30�

The unit vector, n, represents the perpendicular
pointing away from v. On the small sphere, n is
opposite in direction to , ¼ r , and the second inte-
gral becomes

Z Z

�

–
1

r

qV

qr
þ V

q
qr

1

r

� �� �

d� ¼ –

Z Z

�

1

r

qV

qr
r 2 d�

–

Z Z

�

V d�

¼ –

Z Z

�

qV

qr
r d� – 4� �V

½31�

where d� ¼ r 2d�, � is the solid angle, 4�, and �V is
an average value of V on �. Now, in the limit as the
radius of the small sphere shrinks to zero, the right-
hand side of eqn [31] approaches 0 – 4�VP . Hence,
eqn [30] becomes (Kellogg, 1953, p. 219)

VP ¼
1

4�

Z Z

s

1

,

qV

qn
–V

q
qn

1

,

� �� �

ds ½32�
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Figure 6 Geometry for special case of Green’s third
identity.
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with n pointing down (away from the space outside
the Earth). This is a special case of Green’s third
identity. A change in sign of the right-hand side
transforms n to a normal unit vector pointing into v,
away from the masses, which conforms more to an
Earth-centered coordinate system.

The right-hand side of eqn [32] is the sum of
single- and double-layer potentials and thus shows
that every harmonic function (i.e., a function that
satisfies Laplace’ equation) can be written as a
Newtonian potential. Equation [32] is also a solution
to a BVP; in this case, the boundary values are inde-
pendent values of V and of its normal derivative, both
on s (Cauchy problem). Below and in Section 3.02.4.1,
we encounter another BVP in which the potential
and its normal derivative are given in a specified
linear combination on s. Using a similar procedure
and with some extra care, it can be shown (see also
Courant and Hilbert, 1962, vol. II, p. 256 (footnote))
that if P is on the surface, then

VP ¼
1

2�

Z Z

s

1

,

qV

qn
–V

q
qn

1

,

� �� �

ds ½33�

where n points into the masses. Comparing this to
eqn [32], we see that V is discontinuous as one
approaches the surface; this is due to the double-
layer part (see eqn [18]).

Equation [32] demonstrates that a solution to a
particular BVP exists. Specifically, we are able to
measure the potential (up to a constant) and its deri-
vatives (the gravitational acceleration) on the surface
and thus have a formula to compute the potential
anywhere in exterior space, provided we also know
the surface, s. Other BVPs also have solutions under
appropriate conditions; a discussion of existence the-
orems is beyond the present scope and may be found
in (Kellogg, 1953). Equation [33] has deep geodetic
significance. One objective of geodesy is to determine
the shape of the Earth’s surface. If we have measure-
ments of gravitational quantities on the Earth’s
surface, then conceptually we are able to determine
its shape from eqn [33], where it would be the only
unknown quantity. This is the basis behind the work
of Molodensky et al. (1962), to which we return
briefly at the end of this section.

3.02.3.2 Uniqueness Theorems

Often the existence of a solution is proved simply by
finding one (as illustrated above). Whether such as
solution is the only one depends on a corresponding

uniqueness theorem. That is, we wish to know if a
certain set of boundary values will yield just one
potential in space. Before considering such theorems,

we classify the BVPs that are typically encountered
when determining the exterior potential from mea-
surements on a boundary. In all cases, it is an exterior
BVP; that is, the gravitational potential, V, is harmo-

nic (r2V ¼ 0) in the space exterior to a closed
surface that contains all the masses. The exterior
space thus contains infinity. Interior BVPs can be
constructed, as well, but are not applicable to our

objectives.

• Dirichlet problem (or, BVP of the first kind ). Solve for
V in the exterior space, given its values every-
where on the boundary.

• Neumann problem (or, BVP of the second kind ). Solve
for V in the exterior space, given values of its
normal derivative everywhere on the boundary.

• Robin problem (mixed BVP, or BVP of the third kind ).
Solve for V in the exterior space, given a linear
combination of it and its normal derivative on the
boundary.

Using Green’s identities, we prove the following
theorems for these exterior problems; similar results
hold for the interior problems.

Theorem 1. If V is harmonic (hence continuously
differentiable) in a closed region, v, and if V vanishes
everywhere on the boundary, s, then V also vanishes

everywhere in the region, v.
Proof. Since V ¼ 0 on s, Green’s first identity (eqn

[28]) with U ¼ V gives

ZZ Z




rVð Þ2 dv ¼
Z Z

s

V
qV

qn
ds ¼ 0 ½34�

The integral on the left side is therefore always
zero, and the integrand is always non-negative.
Hence, �V ¼ 0 everywhere in v, which implies
that V ¼ constant in v. Since V is continuous in
v and V ¼ 0 on s, that constant must be zero; and so
V ¼ 0 in v.

This theorem solves the Dirichlet problem for the
trivial case of zero boundary values and it enables the
following uniqueness theorem for the general
Dirichlet problem.

Theorem 2 (Stokes’ theorem). If V is harmonic (hence
continuously differentiable) in a closed region, v,
then V is uniquely determined in v by its values on

the boundary, s.
Proof. Suppose the determination is not unique:

that is, suppose there are V1 and V2, both harmonic
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in v and both having the same boundary values on s.
Then the function V ¼ V2 –V1 is harmonic in v with
all boundary values equal to zero. Hence, by
Theorem 1, V2 –V1 ¼ 0 identically in v, or V2 ¼ V1

everywhere, which implies that any determination is
unique based on the boundary values.

Theorem 3. If V is harmonic (hence continuously
differentiable) in the exterior region, v, with closed
boundary, s, then V is uniquely determined by the
values of its normal derivative on s.

Proof. We begin with Green’s first identity, eqn
[28], as in the proof of Theorem 1 to show that if the
normal derivative vanishes everywhere on s, then V is
a constant in v. Now, suppose there are two harmonic
functions in v : V1 and V2, with the same normal
derivative values on s. Then the normal derivative
values of their difference are zero; and, by the above
demonstration, V ¼ V2 –V1 ¼ constant in v. Since V

is a Newtonian potential in the exterior space, that
constant is zero, since by eqn [10], lim,!1 V ¼ 0.
Thus, V2 ¼ V1, and the boundary values determine
the potential uniquely.

This is a uniqueness theorem for the exterior
Neumann BVP. Solutions to the interior problem
are unique only up to an arbitrary constant.

Theorem 4. Suppose V is harmonic (hence continu-
ously differentiable) in the closed region, v, with
boundary, s; and, suppose the boundary values are
given by

g ¼ 
V js þ �
qV

qn

�

�

�

s
½35�

Then V is uniquely determined by these values if

=� > 0.

Proof. Suppose there are two harmonic functions,
V1 and V2, with the same boundary values, g, on s.
Then V ¼ V2 –V1 is harmonic with boundary values


 V2 –V1ð Þjs þ �
qV2

qn
–
qV1

qn

� �

�

�

�

s
¼ 0 ½36�

With U ¼ V ¼ V2 –V1, Green’s first identity, eqn
[28], gives
Z Z Z

v

r V2 –V1ð Þð Þ2 dv ¼
Z Z

s

V2 –V1ð Þ –

�

V2 –V1ð Þ ds

½37�

Then
ZZ Z




r V2 –V1ð Þð Þ2 dv þ 

�

Z Z

s

V2 –V1ð Þ2 dS ¼ 0 ½38�

Since 
=� > 0, eqn [38] implies thatr V2 –V1ð Þ ¼ 0
in v; and V2 –V1 ¼ 0 on s. Hence V2 –V1 ¼ constant

in v; and V2 ¼ V1 on s. By the continuity of V1 and V2,
the constant must be zero, and the uniqueness is
proved.

The solution to the Robin problem is unique only
in certain cases. The most famous problem in physi-
cal geodesy is the determination of the disturbing
potential, T, from gravity anomalies, �g , on the
geoid (Section 3.02.1.3). Suppose T is harmonic out-
side the geoid; the second of eqns [5] provides an
approximate form of boundary condition, showing
that this is a type of Robin problem. We find that

 ¼ – 2=r , and, recalling that when v is the exterior
space the unit vector n points inward toward the
masses, that is, q=qn ¼ – q=qr , we get � ¼ 1. Thus,
the condition in Theorem 4 on 
=� is not fulfilled
and the uniqueness is not guaranteed. In fact, we will
see that the solution obtained for the spherical
boundary is arbitrary with respect to the coordinate
origin (Section 3.02.4.1).

3.02.3.3 Solutions by Integral Equation

Green’s identities show how a solution to Laplace’s
equation can be transformed from a volume integral,
that is, an integral of source points, to a surface
integral of BVPs, as demonstrated by eqn [32]. The
uniqueness theorems for the BVPs suggest that the
potential due to a volume density distribution can
also be represented as due to a generalized density
layer on the bounding surface, as long as the result is
harmonic in exterior space, satisfies the boundary
conditions, and is regular at infinity like a
Newtonian potential. Molodensky et al. (1962) sup-
posed that the disturbing potential is expressible as

T ¼
Z Z

s

�

,
ds ½39�

where � is a surface density to be solved using the
boundary condition. With the spherical approxima-
tion for the gravity anomaly, eqn [5], one arrives at
the following integral equation

2�� cos � –

Z Z

s

q
qr

1

,

� �

þ 2

r,

� �

� ds ¼ �g ½40�

The first term accounts for the discontinuity at the
surface of the derivative of the potential of a density
layer, where � is the deflection angle between the
normal to the surface and the direction of the (radial)
derivative (Heiskanen and Moritz, 1967, p. 6; Günter,
1967, p. 69). This Fredholm integral equation of the
second kind can be simplified with further approx-
imations, and, a solution for the density, �, ultimately
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leads to the solution for the disturbing potential
(Moritz, 1980).

Other forms of the initial representation have also
been investigated, where Green’s functions other
than 1=, lead to simplifications of the integral equa-
tion (e.g., Petrovskaya, 1979). Nevertheless, most
practical solutions rely on approximations, such as
the spherical approximation for the boundary condi-
tion, and even the formulated solutions are not
strictly guaranteed to converge to the true solutions
(Moritz, 1980). Further treatments of the BVP in a
geodetic/mathematical setting may be found in the
volume edited by Sansò and Rummel (1997).

In the next section, we consider solutions for T as
surface integrals of boundary values with appropriate
Green’s functions. In other words, the boundary
values (whether of the first, second, or third kind)
may be thought of as sources, and the consequent
potential is again the sum (integral) of the product of
a boundary value and an appropriate Green’s func-
tion (i.e., a function that depends on both the source
point and the computation point in some form of
inverse distance in accordance with Newtonian
potential theory). Such solutions are readily obtained
if the boundary is a sphere.

3.02.4 Solutions to the Spherical BVP

This section develops two types of solutions to stan-
dard BVPs when the boundary is a sphere: the
spherical harmonic series and an integral with a
Green’s function. All three types of problems are
solved, but emphasis is put on the third BVP since
gravity anomalies are the most prevalent boundary
values (on land, at least). In addition, it is shown how
the Green’s function integrals can be inverted to
obtain, for example, gravity anomalies from values
of the potential, now considered as boundary values.
Not all possible inverse relationships are given, but it
should be clear at the end that, in principle, virtually
any gravitational quantity can be obtained in space
from any other quantity on the spherical boundary.

3.02.4.1 Spherical Harmonics and Green’s
Functions

For simple boundaries, Laplace’s equation [24] is rela-
tively easy to solve provided there is an appropriate
coordinate system. For the Earth, the solutions com-
monly rely on approximating the boundary by a sphere.
This case is described in detail and a more accurate

approximation based on an ellipsoid of revolution is

briefly examined in Section 3.02.5.2 for the normal

potential. In spherical polar coordinates, �; �; rð Þ, the

Laplacian operator is given by Hobson (1965, p. 9)

r2 ¼ 1

r 2

q
qr

r 2 q
qr
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þ 1

r 2

1

sin �

q
q�

sin �
q
q�

� �

þ 1

r 2sin2�

q2

q�2
½41�

A solution to r2V ¼ 0 in the space outside a sphere
of radius, R, with center at the coordinate origin can
be found by the method of separation of variables,
whereby one postulates the form of the solution, V, as

V �; �; rð Þ ¼ f �ð Þg �ð Þh rð Þ ½42�

Substituting this and the Laplacian above into eqn
[24], the multivariate partial differential equation
separates into three univariate ordinary differential
equations (Hobson, 1965, p. 9; Morse and Feshbach,
1953, p. 1264). Their solutions are well-known func-
tions, for example,

V �; �; rð Þ ¼ Pnmðcos �Þ sin m�
1

r nþ1
½43a�

or

V �; �; rð Þ ¼ Pnmðcos �Þcos m�
1

r nþ1
½43b�

where Pnm tð Þ is the associated Legendre function of
the first kind and n, m are integers such that
0 � m � n, n � 0. Other solutions are also possible
(e.g., g �ð Þ ¼ ea� aPRð Þ and hðrÞ ¼ r n), but only
eqns [43] are consistent with the problem at hand:
to find a real-valued Newtonian potential for the
exterior space of the Earth (regular at infinity and
2�-periodic in longitude). The general solution is a
linear combination of solutions of the forms given by
eqns [43] for all possible integers, n and m, and can be
written compactly as

V �; �; rð Þ ¼
X

1

n¼0

X

n

m¼ – n

R

r

� �nþ1

vnm
�Ynm �; �ð Þ ½44�

where the �Y nm are surface spherical harmonic func-
tions defined as

�Ynm �; �ð Þ ¼ �Pn mj j cos �ð Þ
cos m�; m � 0

sin mj j�; m < 0

(

½45�

and �Pnm is a normalization of Pnm so that the ortho-
gonality of the spherical harmonics is simply
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1

4�

Z Z

�

�Ynm �; �ð Þ �Yn9m9 �; �ð Þ d�

¼
1; n ¼ n9 and m ¼ m9

0; n 6¼ n9 or m 6¼ m9

(

½46�

and where � ¼ �; �ð Þj0 � � � �; 0 � � � 2�f g
represents the unit sphere, with d� ¼ sin � d� d�.
For a complete mathematical treatment of spheri-
cal harmonics, one may refer to Müller (1966). The
bounding spherical radius, R, is introduced so that
all the constant coefficients, vnm, also known as
Stokes constants, have identical units of measure.
Applying the orthogonality to the general solution
[44], these coefficients can be determined if the
function, V, is known on the bounding sphere
(boundary condition):

vnm ¼
1

4�

Z Z

�

V �; �; Rð Þ �Ynm �; �ð Þd� ½47�

Equation [44] is known as a spherical harmonic
expansion of V and with eqn [47] it represents a
solution to the Dirichlet BVP if the boundary is a
sphere. The solution thus exists and is unique in the
sense that these boundary values generate no other
potential. We will, however, find another equivalent
form of the solution.

In a more formal mathematical setting, the solution
[46] is an infinite linear combination of orthogonal basis

functions (eigenfunctions) and the coefficients, vnm, are

the corresponding eigenvalues. One may also interpret
the set of coefficients as the spectrum (Legendre spec-

trum) of the potential on the sphere of radius, R

(analogous to the Fourier spectrum of a function on
the plane or line). The integers, n, m, correspond to

wave numbers, and are called degree (n) and order (m),

respectively. The spherical harmonics are further clas-
sified as zonal (m ¼ 0), meaning that the zeros of �Y n0

divide the sphere into latitudinal zones; sectorial
(m ¼ n), where the zeros of �Y nn divide the sphere into

longitudinal sectors; and tesseral (the zeros of �Y nm tes-
sellate the sphere) (Figure 7).

While the spherical harmonic series has its
advantages in global representations and spectral inter-
pretations of the field, a Green’s function representation
provides a more local characterization of the field.
Changing a boundary value anywhere on the globe
changes all coefficients, vnm, according to eqn [47],
which poses both a numerical challenge in applications,
as well as in keeping a standard model up to date.
However, since the Green’s function essentially depends
on the inverse distance (or higher power thereof), a
remote change in boundary value generally does not
appreciably affect the local determination of the field.

When the boundary is a sphere, the solutions to
the BVPs using a Green’s function are easily derived
from the spherical harmonic series representation.
Moreover, it is possible to derive additional integral
relationships (with appropriate Green’s functions)
among all the derivatives of the potential. To forma-
lize and simultaneously simplify these derivations,
consider harmonic functions, f and h, where h

depends only on � and r, and function g, defined on
the sphere of radius, R. Thus let

f �; �; rð Þ ¼
X

1

n¼0

X

n

m¼ – n

R

r

� �nþ1

fnm
�Ynm �; �ð Þ ½48�

h �; rð Þ ¼
X

1

n¼0

2nþ 1ð Þ R

r

� �nþ1

hnPn cos �ð Þ ½49�

g �; �; Rð Þ ¼
X

1

n¼0

X

n

m¼ – n

g nm
�Ynm �; �ð Þ ½50�

where Pn cos�ð Þ ¼ �Pn0 cos�ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
p

is the nth
degree Legendre polynomial. Constants fnm and gnm

are the respective harmonic coefficients of f and g

when these functions are restricted to the sphere of
radius, R. Then, using the decomposition formula for
Legendre polynomials,

P87 (cos θ) cos 7λP88 (cos θ) cos 8λP80 (cos θ)

Figure 7 Examples of zonal, sectorial, and tesseral harmonics on the sphere.
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Pn coscð Þ ¼ 1

2nþ 1

X

n

m¼ – n

�Ynm �; �ð Þ �Ynm �9; �9ð Þ ½51�

where

cosc ¼ cos � cos �9þ sin � sin �9cos � –�9ð Þ ½52�

it is easy to prove the following theorem.
Theorem (convolution theorem in spectral analysis on the

sphere).

f �; �; rð Þ ¼ 1

4�

Z Z

�

g �9; �9; Rð Þh c; rð Þd�

if and only if fnm ¼ g nmhn

½53�

Here, and in the following, d� ¼ sin �9d�9d�9. The
angle, c, is the distance on the unit sphere between
points �; �ð Þ and �9; �9ð Þ.

Proof. The forward statement [53] follows directly by
substituting eqns [51] and [49] into the first equation

[53], together with the spherical harmonic expansion

[50] for g. A comparison with the spherical harmonic

expansion for f yields the result. All steps in this proof

are reversible, and so the reverse statement also holds.
Consider now f to be the potential, V, outside the

sphere of radius, R, and its restriction to the sphere to be

the function, g : g �; �ð Þ ¼ V �; �; Rð Þ. Then, clearly,

hn ¼ 1, for all n; by the theorem above, we have

V �; �; rð Þ ¼ 1

4�

Z Z

�

V �9; �9; Rð ÞU c; rð Þd� ½54�

where

U c; rð Þ ¼
X

1

n¼0

2nþ 1ð Þ R

r

� �nþ1

Pn coscð Þ ½55�

For the distance

, ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r 2 þ R2 – 2rR cosc
p

½56�

between points �; �; rð Þ and �9; �9; Rð Þ, with r � R,
the identity (the Coulomb expansion; Cushing, 1975,
p. 155),

1

,
¼ 1

R

X

1

n¼0

R

r

� �nþ1

Pn coscð Þ ½57�

yields, after some arithmetic (based on taking the
derivative on both sides with respect to r),

U c; rð Þ ¼ R r 2 –R2ð Þ
,3 ½58�

Solutions [44] and [54] to the Dirichlet BVP for a
spherical boundary are identical (in view of the con-
volution theorem [53]). The integral in [54] is known
as the Poisson integral and the function U is the

corresponding Green’s function, also known as
Poisson’s kernel.

For convenience, one separates Earth’s gravita-
tional potential into a reference potential (Section

3.02.1.3) and the disturbing potential, T. The disturb-

ing potential is harmonic in free space and satisfies

the Poisson integral if the boundary is a sphere. In

deference to physical geodesy where relationships

between the disturbing potential and its derivatives

are routinely applied, the following derivations are

developed in terms of T, but hold equally for any

exterior Newtonian potential. Let

T �; �; rð Þ ¼ GM

R

X

1

n¼0

X

n

m¼ – n

R

r

� �nþ1

�Cnm
�Ynm �; �ð Þ ½59�

where M is the total mass (including the atmosphere)
of the Earth and the dCnm are unitless harmonic
coefficients, being also the difference between coeffi-
cients for the total and reference gravitational
potentials (Section 3.02.5.2). The coefficient, �C00, is
zero under the assumption that the reference field
accounts completely for the central part of the total
field. Also note that these coefficients specifically
refer to the sphere of radius, R.

The gravity disturbance is defined (in spherical
approximation) to be the negative radial derivative of

T, the first of eqns [5]. From eqn [59], we have

�g �; �; rð Þ ¼ –
q
qr

T �; �; rð Þ

¼ GM

R2

X

1

n¼0

X

n

m¼ – n

R

r

� �nþ2

nþ 1ð Þ�Cnm
�Ynm �; �ð Þ

½60�

and, applying the convolution theorem [53], we
obtain

T �; �; rð Þ ¼ R

4�

Z Z

�

�g �9; �9; Rð ÞH c; rð Þd� ½61�

where with gnm ¼ nþ 1ð ÞdCnm=R and fnm ¼ dCnm, we
have hn ¼ fnm=gnm ¼ R= nþ 1ð Þ, and hence (taking
care to keep the Green’s function unitless)

H c; rð Þ ¼
X

1

n¼0

2nþ 1

nþ 1

R

r

� �nþ1

Pn coscð Þ ½62�

The integral in [61] is known as the Hotine integral,
the Green’s function, H, is called the Hotine kernel,
and with a derivation based on equation [57], it is
given by (Hotine 1969, p. 311)

H c; rð Þ ¼ 2R

,
– ln 1þ ,

2R sin2c=2

� �

½63�
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Equation [61] solves the Neumann BVP when the
boundary is a sphere.

The gravity anomaly (again, in spherical approx-
imation) is defined by eqn [5]

�g �; �; rð Þ ¼ –
q
qr

–
2

r

� �

T �; �; rð Þ ½64�

or, also,

�g �; �; rð Þ ¼ GM

R2

X

1

n¼0

X

n

m¼ – n

R

r

� �nþ2

n – 1ð Þ�Cnm
�Ynm �; �ð Þ

½65�

In this case, we have gnm ¼ n – 1ð ÞdCnm=R and
hn ¼ R= n – 1ð Þ. The convolution theorem in this
case leads to the geodetically famous Stokes integral,

T �; �; rð Þ ¼ R

4�

Z Z

�

�g �9; �9; Rð ÞS c; rð Þd� ½66�

where we define Green’s function to be

S c; rð Þ ¼
X

1

n¼2

2nþ 1

n – 1

R

r

� �nþ1

Pn coscð Þ

¼ 2
R

,
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r
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r 2
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r 2
cosc

– 3
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r 2
cosc ln

,þ r –R cosc
2r

½67�

more commonly called the Stokes kernel. Equation
[66] solves the Robin BVP if the boundary is a
sphere, but it includes specific constraints that ensure
the solution’s uniqueness – the solution by itself is
not unique, in this case, as proved in Section 3.02.3.2.
Indeed, eqn [65] shows that the gravity anomaly has
no first-degree harmonics for the disturbing poten-
tial; therefore, they cannot be determined from the
boundary values. Conventionally, the Stokes kernel
also excludes the zero-degree harmonic, and thus the
complete solution for the disturbing potential is
given by

T �; �; rð Þ ¼ GM

r
�C00

þ GM

R

X

1

m¼ – 1

R

r

� �2

�C1m
�Y1m �; �ð Þ

þ R

4�

Z Z

�

�g �9; �9; Rð ÞS c; rð Þ d� ½68�

The central term, �C00, is proportional to the differ-
ence in GM of the Earth and reference ellipsoid and is
zero to high accuracy. The first-degree harmonic
coefficients, �C1m, are proportional to the center-of-
mass coordinates and can also be set to zero with
appropriate definition of the coordinate system (see
Section 3.02.5.1). Thus, the Stokes integral [66] is the

more common expression for the disturbing poten-
tial, but it embodies hidden constraints.

We note that gravity anomalies also serve as
boundary values in the harmonic series form of the
solution for the disturbing potential. Applying the
orthogonality of the spherical harmonics to eqn [65]
yields immediately

�Cnm ¼
R2

4� n – 1ð ÞGM

Z Z

�

�g �9; �9; Rð Þ �Ynm �9; �9ð Þd�;

n � 2 ½69�

A similar formula holds when gravity disturbances
are the boundary values (n – 1 in the denominator
changes to nþ 1). In either case, the boundary values
formally are assumed to reside on a sphere of radius,
R. An approximation results if they are given on the
geoid, as is usually the case.

3.02.4.2 Inverse Stokes and Hotine
Integrals

The convolution integrals above can easily be
inverted by considering again the spectral
relationships. For the gravity anomaly, we note that
f ¼ r�g is harmonic with coefficients,
fnm ¼ GM n – 1ð ÞdCnm=R. Letting gnm ¼ GM dCnm=R,

we find that hn ¼ n – 1; from the convolution theo-
rem, we can write

�g �; �; rð Þ ¼ 1

4�R

Z Z

�

T �9; �9; Rð ÞẐ c; rð Þ d� ½70�

where

Ẑ c; rð Þ ¼
X

1

n¼0

2nþ 1ð Þ n – 1ð Þ R

r

� �nþ2

Pn coscð Þ ½71�

The zero- and first-degree terms are included provi-
sionally. Note that

Ẑ c; rð Þ ¼ – R
q
qr
þ 2

r

� �

U c; rð Þ ½72�

that is, we could have simply used the Dirichlet
solution [54] to obtain the gravity anomaly, as given
by [70], from the disturbing potential. It is convenient
to separate the kernel function as follows:

Ẑ c; rð Þ ¼ Z c; rð Þ –
X

1

n¼0

2nþ 1ð Þ R

r

� �nþ2

Pn coscð Þ ½73�

where

Z c; rð Þ ¼
X

1

n¼1

2nþ 1ð Þn R

r
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Pn coscð Þ ½74�
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We find that

�g �; �; rð Þ ¼ –
1

r
T �; �; rð Þ

þ 1

4�R

Z Z

�

T �9; �9; Rð ÞZ c; rð Þ d� ½75�

Now, since Z has no zero-degree harmonics, its inte-
gral over the sphere vanishes, and one can write the
numerically more convenient formula:

�g �; �; rð Þ ¼ –
1

r
T �; �; rð Þ þ 1

4�R

Z Z

�

ðT �9; �9; Rð Þ

–T �; �; Rð ÞÞZ c; rð Þ d� ½76�

This is the inverse Stokes formula. Given T on the
sphere of radius R (e.g., in the form of geoid undula-
tions, T ¼ �N ), this form is useful when the gravity
anomaly is also desired on this sphere. It is one way to
determine gravity anomalies on the ocean surface
from satellite altimetry, where the ocean surface is
approximated as a sphere. Analogously, from eqns
[60] and [64], it is readily seen that the inverse
Hotine formula is given by

�g �; �; rð Þ ¼ 1

r
T �; �; rð Þ þ 1

4�R

Z Z

�

ðT �9; �9; Rð Þ

–T �; �; Rð ÞÞZ c; rð Þ d� ½77�

Note that the difference of eqns [76] and [77] yields
the approximate relationship between the gravity
disturbance and the gravity anomaly inferred from
eqns [5].

Finally, we realize that, for r ¼ R, the series for Z

c; Rð Þ is not uniformly convergent and special
numerical procedures (that are outside the present
scope) are required to approximate the correspond-
ing integrals.

3.02.4.3 Vening-Meinesz Integral and Its
Inverse

Other derivatives of the disturbing potential may also
be determined from boundary values. We consider
here only gravity anomalies, being the most preva-
lent data type on land areas. The solution is either in
the form of a series – simply the derivative of the
series [59] with coefficients given by eqn [69], or an
integral with appropriate derivative of the Green’s
function. The horizontal derivatives of the disturbing
potential are often interpreted as the deflections of
the vertical to which they are proportional in sphe-
rical approximation (eqn [5]):
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where �; � are the north and east deflection compo-
nents, respectively, and � is the normal gravity.
Clearly, the derivatives can be taken directly inside
the Stokes integral, and we find
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and
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sin � cos �9 – cos � sin �9cos �9 –�ð Þð Þ ¼ cos
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1

sin �
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sin �9sin �9 –�ð Þ ¼ sin
 ½81�

The angle, 
, is the azimuth of �9; �9ð Þ at �; �ð Þ on
the unit sphere. The integrals [79] are known as the
Vening-Meinesz integrals. Analogous integrals for
the deflections arise when the boundary values are
the gravity disturbances (the Green’s functions are
then derivatives of the Hotine kernel).

For the inverse Vening-Meinesz integrals, we
need to make use of Green’s first identity for surface

functions, f and g:
Z Z

s

f �� gð Þ ds þ
Z Z

s

rf ?rg ds ¼
Z

b

f rg ? n db
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where b is the boundary (a line) of surface, s; r and
�� are the gradient and Laplace–Beltrami operators,
which for the spherical surface are given by
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and where n is the unit vector normal to b. For a
closed surface such as the sphere, the line integral
vanishes, and we have

Z Z

�

f �� gð Þ d� ¼ –

Z Z

�

rf ?rg d� ½84�

The surface spherical harmonics, �Y nm �; �ð Þ, satisfy
the following differential equation:

�� �Ynm �; �ð Þ þ n nþ 1ð Þ �Ynm �; �ð Þ ¼ 0 ½85�

Therefore, the harmonic coefficients of ��T
�; �; rð Þ on the sphere of radius, R, are

��T �; �; rð Þ½ �nm¼ – n nþ 1ð ÞGM

R
�Cnm ½86�

Hence, by the convolution theorem (again, consider-
ing the harmonic function, f ¼ r�g),

�g �; �; rð Þ ¼ –
1

4�R

Z Z
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where
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and where the zero-degree term of the gravity anom-
aly must be treated separately (e.g., it is set to zero in
this case). Using Green’s identity [84] and eqns [80]
and [81], we have

�g �; �; rð Þ ¼ 1

4�R

Z Z
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Þ q
qc
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where normal gravity on the sphere of radius, R,
is approximated as a constant: � �; Rð Þ.�0. Equation
[89] represents a second way to compute
gravity anomalies from satellite altimetry, where
the along-track and cross-track altimetric differences
are used to approximate the deflection components
(with appropriate rotation to north and east
components). Employing differences in altimetric
measurements benefits the estimation since systema-
tic errors, such as orbit error, cancel out. To speed
up the computations, the problem is reformulated
in the spectral domain (see, e.g., Sandwell and
Smith, 1996).

Clearly, following the same procedure for f ¼ T ,
we also have the following relationship:
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It is interesting to note that instead of an integral over
the sphere, the inverse relationship between the dis-
turbing potential on the sphere and the deflection of
the vertical on the same sphere is also more straight-
forward in terms of a line integral:

T �; �; Rð Þ ¼T �0; �0; Rð Þ þ �0

4�

Z ð�; �Þ

ð�0; �0Þ
ð� �9; �9; Rð Þ ds�

– � �9; �9; Rð Þ ds�Þ ½92�

where

ds� ¼ R d�; ds� ¼ R sin � d� ½93�

3.02.4.4 Concluding Remarks

The spherical harmonic series, [59], represents the
general solution to the exterior potential, regardless
of the way the coefficients are determined. We know
how to compute those coefficients exactly on the
basis of a BVP, if the boundary is a sphere. More
complicated boundaries would require corrections
or, if these are omitted, would imply an approxima-
tion. If the coefficients are determined accurately
(e.g., from satellite observations (Section 3.02.6.1),
but not according to eqn [69]), then the spherical
harmonic series model for the potential is not a
spherical approximation. The spherical approxima-
tion enters when approximate relations such as eqns
[5] are used and when the boundary is approximated
as a sphere. However determined, the infinite series
converges uniformly for all r > Rc , where Rc is the
radius of the sphere that encloses all terrestrial
masses. It may also converge below this sphere, but
would represent the true potential only in free space
(above the Earth’s surface, where Laplace’s equation
holds). In practice, though, convergence is not an
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issue since the series must be truncated at some finite
degree. Any trend toward divergence is then part of
the overall model error, due mostly to truncation.

Model errors exist in all the Green’s function
integrals as they depend on spherical approximations
in the boundary condition. In addition, the surface of
integration in these formulas is formally assumed
to be the geoid (where normal derivatives of the
potential coincide with gravity magnitude), but it is
approximated as a sphere. The spherical approxima-
tion results, in the first place, from a neglect of the
ellipsoid flattening, which is about 0.3% for the
Earth. When working with the disturbing potential,
this level of error was easily tolerated in the past (e.g.,
if the geoid undulation is 30 m, the spherical approx-
imation accounts for about 10 cm error), but today it
requires attention as geoid undulation accuracy of
1 cm is pursued.

The Green’s functions all have singularities when
the evaluation point is on the sphere of radius, R. For
points above this sphere, it is easily verified that all
the Legendre series for the Green’s functions con-
verge uniformly, since Pn coscð Þj j � 1. When r ¼ R,
the corresponding singularities of the integrals are
either weak (Stokes integral) or strong (e.g., Poisson
integral), requiring special definition of the integral
as Cauchy principal value.

Finally, it is noted that the BVP solutions
also require that no masses reside above the geoid
(the boundary approximated as a sphere). To satisfy
this condition, the topographic masses must be
redistributed appropriately by mathematical reduc-
tion and the gravity anomalies, or disturbances
measured on the Earth’s surface must be reduced to
the geoid (see Chapter 10.05). The mass redistribution
must then be undone (mathematically) in order to
obtain the correct potential on or above the geoid.
Details of these procedures are found in Heiskanen
and Moritz (1967, chapter 3). In addition, the atmo-
sphere, having significant mass, affects gravity
anomalies at different elevations. These effects
may also be removed prior to using them as boundary
values in the integral formulas.

3.02.5 Low-Degree Harmonics:
Interpretation and Reference

The low-degree spherical harmonics of the Earth’s
gravitational potential lend themselves to interpreta-
tion with respect to the most elemental distribution

of the Earth’s density, which also leads to fundamen-

tal geometric characterizations, particularly for the

second-degree harmonics. Let

C að Þ
nm ¼

a

GM

R

a

� �nþ1

vnm ½94�

be unitless coefficients that refer to a sphere of
radius, a. (Recall that coefficients, vnm, eqn [44],
refer to a sphere of radius, R.) Relative to the
central harmonic coefficient, C

að Þ
00 ¼ 1, the next sig-

nificant harmonic, C
að Þ

20 , is more than 3 orders of
magnitude smaller; the remaining harmonic coeffi-
cients are at least 2–3 orders of magnitude smaller
than that. The attenuation after degree 2 is much
more gradual (Table 1), indicating that the bulk of
the potential can be described by an ellipsoidal field.
The normal gravitational field is such a field, but it
also adheres to a geodetic definition that requires the
underlying ellipsoid to be an equipotential surface in
the corresponding normal gravity field. This section
examines the low-degree harmonics from these two
perspectives of interpretation and reference.

3.02.5.1 Low-Degree Harmonics as
Density Moments

Returning to the general expression for the gravita-

tional potential in terms of the Newtonian density

integral (eqn [14]), and substituting the spherical

harmonic series for the reciprocal distance (eqn [57]

with [51]),

Table 1 Spherical harmonic coefficients of the total

gravitational potentiala

Degree
(n)

Order,
(m) Cnm

(a) Cn,�m
(a)

2 0 �4.841 70E�04 0.0

2 1 �2.398 32E�10 1.424 89E� 09
2 2 2.439 32E�06 �1.400 28E� 06

3 0 9.571 89E�07 0.0

3 1 2.030 48E�06 2.481 72E� 07

3 2 9.048 02E�07 �6.190 06E� 07
3 3 7.212 94E�07 1.414 37E� 06

4 0 5.399 92E�07 0.0

4 1 �5.361 67E�07 �4.735 73E� 07
4 2 3.505 12E�07 6.624 45E� 07

4 3 9.908 68E�07 �2.009 76E� 07

4 4 �1.884 72E�07 3.088 27E� 07

aGRACE model GGM02S (Tapley et al., 2005).
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yields a multipole expansion (so called from electro-
statics) of the potential. The spherical harmonic
(Stokes) coefficients are multipoles of the density
distribution (cf. eqn [44]),

vnm ¼
G

Rnþ1 2nþ 1ð Þ

ZZ Z

v

	 r 9ð Þn �Ynm �9; �9ð Þdv ½96�

One may also consider the nth-order moments of
density (from the statistics of distributions) defined
by

�
nð Þ

�� ¼

ZZ Z

v

x0ð Þ
 y0ð Þ� z0ð Þ�	 dv; n ¼ 
þ � þ � ½97�

The multipoles of degree n and the moments of order
n are related, though not all nþ 1ð Þ nþ 2ð Þ=2
moments of order n can be determined from the
2nþ1 multipoles of degree n, when n � 2 (clearly
risking confusion, we defer to the common nomen-
clature of order for moments and degree for spherical
harmonics). This indeterminacy is directly con-
nected to the inability to determine the density
distribution uniquely from external measurements
of the potential (Chao, 2005), which is the classic
geophysical inverse problem.

The zero-degree Stokes coefficient is coordinate
invariant and is proportional to the total mass of the

Earth:

v00 ¼
G

R

ZZZ

volume

	 dv ¼ GM

R
½98�

It also represents a mass monopole, and it is propor-
tional to the zeroth moment of the density, M.

The first-degree harmonic coefficients (represent-
ing dipoles) are proportional to the coordinates of the

center of mass, xcm; ycm; zcmð Þ, which are proportional

to the first-order moments of the density, as verified

by recalling the definition of the first-degree spheri-

cal harmonics:
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Nowadays, by tracking satellites, we have access to
the center of mass of the Earth (including its atmo-
sphere), since it defines the center of their orbits.
Ignoring the small motion of the center of mass
(annual amplitude of several millimeters) due to the
temporal variations in the mass distribution, we may
choose the coordinate origin for the geopotential
model to coincide with the center of mass, thus
annihilating the first-degree coefficients.

The second-order density moments likewise are
related to the second-degree harmonic coefficients
(quadrupoles). They also define the inertia tensor of
the body. The inertia tensor is the proportionality
factor in the equation that relates the angular
momentum vector, H, and the angular velocity, w,
of a body, like the Earth:

H ¼ I! ½100�

and is given by

I ¼

Ixx Ixy Ixz

Iyx Iyy Iyz
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It comprises the moments of inertia on the diagonal

Ixx ¼
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and the products of inertia off the diagonal

Ixy ¼ Iyx ¼ –

ZZ Z

volume

	 x9y9 dv;

Ixz ¼ Izx ¼ –
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volume
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Iyz ¼ Izy ¼ –
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volume
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½103�

Note that
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Ixx ¼ � 2ð Þ
020 þ �

2ð Þ
002; Ixy ¼ –�

2ð Þ
110; etc ½104�

and there are as many (six) independent tensor com-
ponents as second-order density moments. Using the
explicit expressions for the second-degree spherical
harmonics, we have from eqn [96] with n ¼ 2:
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These are also known as MacCullagh’s formulas. Not
all density moments (or, moments of inertia) can be
determined from the Stokes coefficients.

If the coordinate axes are chosen so as to diago-
nalize the inertia tensor (products of inertia are then
equal to zero), then they are known as principal axes
of inertia, or also ‘figure’ axes. For the Earth, the
z-figure axis is very close to the spin axis (within
several meters at the pole); both axes move with
respect to each other and the Earth’s surface, with
combinations of various periods (daily, monthly,
annually, etc.), as well as secularly in a wandering
fashion. Because of these motions, the figure axis is
not useful as a coordinate axis that defines a frame
fixed to the (surface of the) Earth. However, because
of the proximity of the figure axis to the defined
reference z-axis, the second-degree, first-order har-
monic coefficients of the geopotential are relatively
small (Table 1).

The arbitrary choice of the x-axis of our Earth-
fixed reference coordinate system certainly did not
attempt to eliminate the product of inertia, Ixy(the
x-axis is defined by the intersection of the Greenwich
meridian with the equator, and the y-axis completes a
right-handed mutually orthogonal triad). However, it
is possible to determine where the x-figure axis is
located by combining values of the second-degree,
second-order harmonic coefficients. Let u, v, w be the
axes that define a coordinate system in which the
inertia tensor is diagonal, and assume that Iww ¼ Izz.
A rotation by the angle, –�0, about the w- (also z-)
figure axis brings this ideal coordinate system back to
the conventional one in which we calculate the har-
monic coefficients. Tensors transform under rotation,
defined by matrix, R , according to

Ixyz ¼ R Iuvw R T ½106�

With the rotation about the w-axis given by the
matrix,

R ¼

cos�0 – sin �0 0

sin�0 cos�0 0

0 0 1

0

B

B

@

1

C

C

A

½107�

and with eqns [105], it is straightforward to show that

v2; – 2 ¼ –

ffiffiffiffiffi

15
p

G

10R3
Iuu – Ivvð Þsin 2�0

v2; 2 ¼ –

ffiffiffiffiffi

15
p

G

10R3
Iuu – Ivvð Þcos 2�0

½108�

Hence, we have

�0 ¼
1

2
tan – 1 v2; – 2

v2; 2
½109�

where the quadrant is determined by the signs of the
harmonic coefficients. From Table 1, we find that
�0 ¼ – 14:929	; that is, the u-figure axis is in the
mid-Atlantic between South America and Africa.

The second-degree, second-order harmonic coef-
ficient, v2; 2, indicates the asymmetry of the Earth’s
mass distribution with respect to the equator. Since
v2; 2 > 0 (for the Earth), equations [108] show that

Ivv > Iuu and thus the equator ‘bulges’ more in the
direction of the u-figure axis; conversely, the equator
is flattened in the direction of the v-figure axis. This
flattening is relatively small: 1.1� 10�5.

Finally, consider the most important second-
degree harmonic coefficient, the second zonal har-
monic, v2; 0. Irrespective of the x-axis definition, it is
proportional to the difference between the moment
of inertia, Izz, and the average of the equatorial
moments, Ixx þ Iyy

� �

=2. Again, since v2; 0 < 0, the
Earth bulges more around the equator and is flat-
tened at the poles. The second zonal harmonic
coefficient is roughly 1000 times larger than the
other second-degree coefficients and thus indicates
a substantial polar flattening (owing to the Earth’s
early more-fluid state). This flattening is approxi-
mately 0.003.

3.02.5.2 Normal Ellipsoidal Field

Because of Earth’s dominant polar flattening and the
near symmetry of the equator, any meridional section
of the Earth is closer to an ellipse than a circle. For
this reason, ellipsoidal coordinates have often been
advocated in place of the usual spherical coordinates.
In fact, for geodetic positioning and geographic map-
ping, because of this flattening, the conventional
(geodetic) latitude and longitude are coordinates
that define the direction of the perpendicular to an
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ellipsoid, not the radial direction from the origin.
These geodetic coordinates are not the ellipsoidal
coordinates defined in Section 3.02.1 (eqn [2]) and
would be rather useless in potential modeling
because they do not separate Laplace’ differential
equation.

Harmonic series in terms of the ellipsoidal coor-
dinates, �; �; uð Þ, however, can be developed easily.
They have not been adopted in most applications,
perhaps in part because of the nonintuitive nature of
the coordinates. Nevertheless, it is advantageous to
model the normal (or reference) gravity field in terms
of these ellipsoidal coordinates since it is based on an
ellipsoid. Laplace’ equation in these ellipsoidal coor-
dinates can be separated, analogous to spherical
coordinates, and the solution is obtained by succes-
sively solving three ordinary differential equations.
Applied to the exterior gravitational potential, V, the
solution is similar to the spherical harmonic series
(eqn [44]) and is given by

V �; �; uð Þ ¼
X

1

n¼0

X

n

m¼ – n

Q n mj j iu=Eð Þ
Q n mj j ib=Eð Þ ve

nm
�Ynm �; �ð Þ ½110�

where E is the linear eccentricity associated with the
coordinate system and Qnm is the associated Legendre
function of the second kind. The coefficients of the
series, ve

nm, refer to an ellipsoid of semiminor axis, b;
and, with the series written in this way, they are all
real numbers with the same units as V. An exact
relationship between these and the spherical harmo-
nic coefficients, vnm, was given by Hotine (1969) and
Jekeli (1988).

With this formulation of the potential, Dirichlet’s
BVP is solved for an ellipsoidal boundary using the
orthogonality of the spherical harmonics:

ve
nm ¼

1

4�

Z Z

�

V �; �; bð Þ �Ynm �; �ð Þ d� ½111�

where d� ¼ sin �d�d� and � ¼ d; �ð Þj0 � d � �;f
0 � � � 2�g. Note that while the limits of integra-
tion and the differential element, d�, are the same as
for the unit sphere, the boundary values are on the
ellipsoid. Unfortunately, integral solutions with ana-
lytic forms of a Green’s function do not exist in this
case, because the inverse distance now depends on
two surface coordinates and there is no correspond-
ing convolution theorem. However, approximations
have been formulated for all three types of BVPs (see
Yu et al., 2002, and references therein). Forms of
ellipsoidal corrections to the classic spherical

integrals have also been developed and applied in
practice (e.g., Fei and Sideris, 2000).

The simplicity of the boundary values of the
normal gravitational potential allows its extension
into exterior space to be expressed in closed analytic
form. Analogous to the geoid in the actual gravity

field, the normal ellipsoid is defined to be a level
surface in the normal gravity field. In other words,

the sum of the normal gravitational potential and the
centrifugal potential due to Earth’s rotation is a con-
stant on the ellipsoid:

V e �; �; bð Þ þ � �; bð Þ ¼ U0 ½112�

Hence, the normal gravitational potential on the
ellipsoid, V e �; �; bð Þ, depends only on latitude and
is symmetric with respect to the equator.
Consequently, it consists of only even zonal harmo-
nics, and because the centrifugal potential has only
zero- and second-degree zonals, the corresponding
ellipsoidal series is finite (up to degree 2). The solu-
tion to this Dirichlet problem is given in ellipsoidal
coordinates by

V e �; �; uð Þ ¼ GM

E
tan – 1 E

u
þ 1

2
!2

ea2 q

q0
cos2� –

1

3

� �

½113�

where a is the semimajor axis of the ellipsoid, !e is
Earth’s rate of rotation, and

q ¼ 1

2
1þ 3

u2

E2

� �

tan – 1 E

u
– 3

u

E

� �

; q0 ¼ qju¼b ½114�

Heiskanen and Moritz (1967) and Hofmann-
Wellenhof and Moritz (2005) provide details of the
straightforward derivation of these and the following
expressions.

The equivalent form of V e in spherical harmonics
is given by

V e �; �; rð Þ ¼ GM

r
1 –
X

1

n¼1

J2n

a

r

� 	2n

P2n cos �ð Þ
 !

½115�

where

J2n ¼ – 1ð Þnþ1 3e2n

2nþ 1ð Þ 2nþ 3ð Þ 1 – nþ 5n

e2
J2

� �

; n � 1

½116�

and e ¼ E=a is the first eccentricity of the ellipsoid.
The second zonal coefficient is given by

J2 ¼
e2

3
1 –

2

15q0

!2
e a2E

GM

� �

¼ I e
zz – I e

xx

Ma2
½117�
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where the second equality comes directly from the
last of eqns [105] and the ellipsoid’s rotational sym-
metry (I e

xx ¼ I e
yy). This equation also provides a direct

relationship between the geometry (the eccentricity
or flattening) and the mass distribution (difference of
second-order moments) of the ellipsoid. Therefore,
J2 is also known as the dynamic form factor – the
flattening of the ellipsoid can be described either
geometrically or dynamically in terms of a difference
in density moments.

The normal gravitational potential depends solely
on four adopted parameters: Earth’s rotation rate, !e ;
the size and shape of the normal ellipsoid, for exam-
ple, a, J2; and a potential scale, for example, GM. The
mean Earth ellipsoid is the normal ellipsoid with
parameters closest to actual corresponding para-
meters for the Earth. GM and J2 are determined by
observing satellite orbits, a can be calculated by fit-
ting the ellipsoid to mean sea level using satellite
altimetry, and Earth’s rotation rate comes from astro-
nomical observations. Table 2 gives current best
values (Groten, 2004) and adopted constants for the
Geodetic Reference Systems of 1967 and 1980
(GRS67, GRS80) and the World Geodetic System
1984 (WGS84).

In modeling the disturbing potential in terms of
spherical harmonics, one naturally uses the form of
the normal gravitational potential given by eqn [115].
Here, we have assumed that all harmonic coefficients
refer to a sphere of radius, a. Corresponding coeffi-
cients for the series of T ¼ V –V e are, therefore,

�C að Þ
nm ¼

0; n ¼ 0

C
að Þ

n0 –
– Jn
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
p ; n ¼ 2; 4; 6; . . .

C að Þ
nm ; otherwise

8

>

>

>

>

<

>

>

>

>

:

½118�

For coefficients referring to the sphere of radius, R, as
in eqn [59], we have �Cnm ¼ a=Rð Þn�C að Þ

nm . The
harmonic coefficients, J2n, attenuate rapidly due to

the factor, e2n, and only harmonics up to degree 10
are significant. Normal gravity, being the gradient of
the normal gravity potential, is used only in applica-
tions tied to an Earth-fixed coordinate system.

3.02.6 Methods of Determination

In this section, we briefly explore the basic technol-

ogies that yield measurements of the gravitational

field. Even though we have reduced the problem of

determining the exterior potential from a volume

integral to a surface integral (e.g., either eqns [66]

or [69]), it is clear that in theory we can never

determine the entire field from a finite number of

measurements. The integrals will always need to be

approximated numerically, and/or the infinite series

of spherical harmonics needs to be truncated.

However, with enough effort and within the limits

of computational capabilities, one can approach the

ideal continuum of boundary values as closely as

desired, or make the number of coefficients in the

series representation as large as possible. The

expended computational and measurement effort

has to be balanced with the ability to account for

inherent model errors (such as the spherical approx-

imation) and the noise of the measuring device. To

be useful for geodetic and geodynamic purposes, the

instruments must possess a sensitivity of at least a few

parts per million, and, in fact, many have a sensitivity

of parts per billion. These sensitivities often come at

the expense of prolonging the measurements (inte-

gration time) in order to average out random noise,

thus reducing the achievable temporal resolution.

This is particularly critical for moving-base instru-

mentation such as on an aircraft or satellite where

temporal resolution translates into spatial resolution

through the velocity of the vehicle.

Table 2 Defining parameters for normal ellipsoids of geodetic reference systems

Reference
system a (m) J2 GM (m3 s�2) !e (rad s�2)

GRS67 6378160 1.0827E� 03 3.98603E14 7.2921151467E� 05

GRS80 6378137 1.08263E�03 3.986005E14 7.292115E�05

WGS84 6378137 1.08262982131E�03 3.986004418E14 7.2921151467E� 05

Best
current

valuesa

6378136.7� 0.1
(mean-tide system)

(1.0826359�0.0000001)E�03
(zero-tide system)

(3.986004418�0.000000008)E14
(includes atmosphere)

7.292115E�5
(mean value)

aGroten E (2004) Fundamental parameters and current (2004) best estimates of the parameters of common relevance to astronomy,
geodesy, and geodynamics. Journal of Geodesy 77: (10–11) (The Geodesist’s Handbook pp. 724–731).
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3.02.6.1 Measurement Systems and
Techniques

Determining the gravitational field through classical

measurements relies on three fundamental laws. The

first two are Newton’s second law of motion and his

law of gravitation. Newton’s law of motion states that

the rate of change of linear momentum of a particle is

equal to the totality of forces, F, acting on it. Given

more familiarly as mid
2x=dt 2 ¼ F, it involves the

inertial mass, mi ; and, conceptually, the forces, F,

should be interpreted as action forces (like propul-

sion or friction). The gravitational field, which is part

of the space we occupy, is due to the presence of

masses like the Earth, Sun, Moon, and planets, and

induces a different kind of force, the gravitational

force. It is related to gravitational acceleration, g,

through the gravitational mass, mg , according to the

law of gravitation, abbreviated here as mgg¼Fg.

Newton’s law of motion must be modified to include

Fg separately. Through the third fundamental law,

Einstein’s equivalence principle, which states that

inertial and gravitational masses are indistinguish-

able, we finally get

d2x

dt 2
¼ aþ g ½119�

where a is the specific force (F=mi ), or also the
inertial acceleration, due to action forces. This equa-
tion holds in a nonrotating, freely falling frame (that
is, an inertial frame), and variants of it can be derived
in more complicated frames that rotate or have their
own dynamic motion. However, one can always
assume the existence of an inertial frame and proceed
on that basis.

There exists a variety of devices that measure the
motion of an inertial mass with respect to the frame

of the device, and thus technically they sense a; such

devices are called accelerometers. Consider the spe-

cial case that an accelerometer is resting on the

Earth’s surface with its sensitive axis aligned along

the vertical. In an Earth-centered frame (inertial, if

we ignore Earth’s rotation), the free-fall motion of

the accelerometer is impeded by the reaction force of

the Earth’s surface acting on the accelerometer. In

this case, the left-hand side of eqn [119] applied to

the motion of the accelerometer is zero, and the

accelerometer, sensing the reaction force, indirectly

measures (the negative of) gravitational acceleration.

This accelerometer is given the special name,

gravimeter.

Gravimeters, especially static instruments, are
designed to measure acceleration at very low fre-
quencies (i.e., averaged over longer periods of time),
whereas accelerometers typically are used in naviga-
tion or other motion-sensing applications, where
accelerations change rapidly. As such, gravimeters
generally are more accurate. Earth-fixed gravimeters
actually measure gravity (Section 3.02.1.3), the dif-
ference between gravitation and centrifugal
acceleration due to Earth’s spin (the frame is not
inertial in this case). The simplest, though not the
first invented, gravimeter utilizes a vertically, freely
falling mass, measuring the time it takes to fall a
given distance. Applying eqn [119] to the falling
mass in the frame of the device, one can solve for g

(assuming it is constant): x tð Þ ¼ 0:5gt 2. This free-fall
gravimeter is a special case of a more general gravi-
meter that constrains the fall using an attached spring
or the arm of a pendulum, where other (action) forces
(the tension in the arm or the spring) thus enter into
the equation.

The first gravimeter, in fact, was the pendulum,
systematically used for gravimetry as early as the
1730s and 1740s by P. Bouguer on a geodetic expedi-
tion to measure the size and shape of the Earth
(meridian arc measurement in Peru). The pendulum
served well into the twentieth century (until the
early 1970s) both as an absolute device, measuring
the total gravity at a point, or as a relative device
indicating the difference in gravity between two
points (Torge, 1989). Today, absolute gravimeters
exclusively rely on a freely falling mass, where
exquisitely accurate measurements of distance and
time are achieved with laser interferometers and
atomic clocks (Zumberge et al., 1982; Niebauer et al.,
1995). Accurate relative gravimeters are much less
expensive, requiring a measurement of distance
change only, and because many errors that cancel
between measurements need not be addressed.
They rely almost exclusively on a spring-suspended
test mass (Nettleton, 1976; Torge, 1989). Developed
early in the twentieth century in response to oil-
exploration requirements, the relative gravimeter
has changed little since then. Modern instruments
include electronic recording capability, as well as
specialized stabilization and damping for deployment
on moving vehicles such as ships and aircraft. The
accuracy of absolute gravimeters is typically of the
order of parts per billion, and relative devices in field
deployments may be as good but more typically are
at least 1 order of magnitude less precise. Laboratory
relative (in time) gravimeters, based on cryogenic
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instruments that monitor the virtual motion of a test
mass that is electromagnetically suspended using
superconducting persistent currents (Goodkind,
1999), are as accurate as portable absolute devices
(or more), owing to the stability of the currents and
the controlled laboratory environment (see Chapters
3.03 and 3.04).

On a moving vehicle, particularly an aircraft, the
relative gravitational acceleration can be determined
only from a combination of gravimeter and kinematic
positioning system. The latter is needed to derive the
(vertical) kinematic acceleration (the left-hand side
of eqn [119]). Today, the GPS best serves that func-
tion, yielding centimeter-level precision in relative
three-dimensional position. Such combined GPS/
gravimeter systems have been used successfully to
determine the vertical component of gravitation over
large, otherwise-inaccessible areas such as the Arctic
Ocean (Kenyon and Forsberg, 2000) and over other
areas that are more economically surveyed from the
air for oil-exploration purposes (Hammer, 1982;
Gumert, 1998). The airborne gravimeter is specially
designed to damp out high-frequency noise and is
usually stabilized on a level platform. Three-dimen-
sional moving-base gravimetry has also been
demonstrated using the triad of accelerometers of a
high-accuracy inertial navigation system (the type
that are fixed to the aircraft without special stabiliz-
ing platforms). The orientation of all accelerometers
on the vehicle must be known with respect to inertial
space, which is accomplished with precision gyro-
scopes. Again, the total acceleration vector of the
vehicle, d2x=dt 2, can be ascertained by time differ-
entiation of the kinematic positions (from GPS). One
of the most critical errors is due to the cross-coupling
of the horizontal orientation error, �c, with the large
vertical acceleration (the lift of the aircraft, essen-
tially equal to – g). This is a first-order effect
(g sin dc) in the estimation of the horizontal gravita-
tion components, but only a second-order effect
(g 1 – cos dcð Þ) on the vertical component. Details of
moving-base vector gravimetry may be found in
Jekeli (2000a, chapter 10) and Kwon and Jekeli
(2001).

The ultimate global gravimeter is the satellite in
free fall (i.e., in orbit due to sufficient forward velo-
city) – the satellite is the inertial mass and the
‘device’ is a set of reference points with known coor-
dinates (e.g., on the Earth’s surface, or another
satellite whose orbit is known; see Chapter 3.05).
The measuring technology is an accurate ranging
system (radar or laser) that tracks the satellite as it

orbits (falls to) the Earth. Ever since Sputnik, the first
artificial satellite, launched into the Earth orbit in
1957, Earth’s gravitational field could be determined
by tracking satellites from precisely known ground
stations. Equation [119], with gravitational accelera-
tion expressed as a truncated series of spherical
harmonics (gradient of eqn [44]), becomes

d2x

dt 2
¼
X

nmax

n¼0

X

n

m¼ – n

vnmr
R

r

� �nþ1

�Ynm �; �þ !e tð Þ
 !

þ �R

½120�

where !e is Earth’s rate of rotation and dR represents
residual accelerations due to action forces (solar
radiation pressure, atmospheric drag, Earth’s albedo,
etc.), gravitational tidal accelerations due to other
bodies (Moon, Sun, planets), and all other subsequent
indirect effects. The x left-hand side of eqn [120] is
more explicitly x tð Þ ¼ x � tð Þ; � tð Þ þ !et; r tð Þ

� �

, and
the spatial coordinates on the right-hand side are also
functions of time. This makes the equation more
conceptual than practical since it is numerically
more convenient to transform the satellite position
and velocity into Keplerian orbital elements (semi-
major axis of the orbital ellipse, its eccentricity, its
inclination to the equator, the angle of perigee, the
right ascension of the node of the orbit, and the mean
motion) all of which also change in time, but most
much more slowly. This transformation was derived
by Kaula (1966) (see also Seeber, 1993).

In the most general case (nmax > 2 and dR 6¼ 0),
there is no analytic solution to eqn [120] or its trans-
formations to other types of coordinates. The
positions of the satellite are observed by ranging
techniques and the unknowns to be solved are the
coefficients, vnm. Numerical integration algorithms
have been specifically adapted to this problem and
extremely sophisticated models for dR are employed
with additional unknown parameters to be solved in
order to estimate as accurately as possible the grav-
itational coefficients (e.g., Cappelari et al., 1976;
Pavlis et al., 1999). The entire procedure falls under
the broad category of dynamic orbit determination,
and the corresponding gravitational field modeling
may be classified as the ‘timewise’ approach. The
partial derivatives of eqn [120] with respect to
unknown parameters, p ¼ . . . ; vnm; . . .f g, are inte-
grated numerically in time, yielding estimates for
H ¼ qx=qp ¼ . . . ; qx=qvnm; . . .f g. These are then

used in a least-squares adjustment of the linearized
model relating observed positions (e.g., via ranges) to
parameters
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�x ¼ H�pþ e ½121�

where dx and dp are differences with respect to
previous estimates, and e represents errors. (Tapley,
1973).

A gravimeter (or accelerometer) on a satellite does
not sense the presence of a gravitational field. This is

evident from the fact that the satellite is in free fall

(apart from small accelerations due to action forces
such as atmospheric drag) and the inertial test mass

and the gravimeter, itself, are equally affected by

gravitation (i.e., they are all in free fall). However,

two accelerometers fixed on a satellite yield, through

the difference in their outputs, a gradient in accel-

eration that includes the gradient of gravitation. On a
nonrotating satellite, the acceleration at an arbitrary

point, b, of the satellite is given by

ab ¼
d2x

dt 2
– g bð Þ ½122�

in a coordinate system with origin at the center of
mass of the satellite. Taking the difference (differen-
tial) of two accelerations in ratio to their separation,
we obtain

�ab

�b
¼ –

�g

�b
½123�

where the ratios represent tensors of derivatives in
the local satellite coordinate frame. For a rotating
satellite, this equation generalizes to

qab

qb
¼ –

qgb

qb
þ �2 þ d

dt
� ½124�

where � is a skew-symmetric matrix whose off-diag-
onal elements are the components of the vector that
defines the rotation rate of the satellite with respect
to the inertial frame. Thus, a gradiometer on a satel-
lite (or any moving vehicle) senses a combination of
gravitational gradient and angular acceleration
(including a centrifugal type). Such a device is sched-
uled to launch for the first time in 2007 as part of the
mission GOCE (Gravity Field and Steady-State Ocean

Circulation Explorer ; Rummel et al., 2002). If the entire
tensor of gradients is measured, then, because of the
symmetry of the gravitational gradient tensor and of

�2, and the antisymmetry of d�=dt , the sum dab=db

þ dab=dbð ÞT eliminates the latter, while the differ-
ence dab=db – dab=dbð ÞT can be used to infer �,
subject to initial conditions.

When the two ends of the gradiometer are fixed to
one frame, the common linear acceleration, d2x=dt 2,
cancels, as shown above; but if the two ends are

independent, disconnected platforms moving in simi-

lar orbits, the gravitational difference depends also on

their relative motion in inertial space. This is the

concept for satellite-to-satellite tracking, by which

one satellite precisely tracks the other and the change

in the range rate between them is a consequence of a

gravitational difference, a difference in action forces,

and a centrifugal acceleration due to the rotation of

the baseline of the satellite pair. It can be shown that

the line-of-sight acceleration (the measurement) is

given by

d2	

dt 2
¼ eT

	 g x2ð Þ – g x1ð Þð Þ þ eT
	 a2 – a1ð Þ

þ 1

	

d

dt
�x

�

�

�

�

�

�

�

�

2

–
d	

dt

� �2
 !

½125�

where e	 is the unit vector along the instantaneous
baseline connecting the two satellites, 	 is the base-
line length (the range), and �x ¼ x2 – x1 is the
difference in position vectors of the two satellites.
Clearly, only the gravitational difference projected
along the baseline can be determined (similar to a
single-axis gradiometer), and then only if both satel-
lites carry accelerometers that sense the
nongravitational accelerations. Also, the orbits of
both satellites need to be known in order to account
for the centrifugal term.

Two such satellite systems were launched
recently to determine the global gravitational field.

One is CHAMP (Challenging Mini-Satellite Payload) in

2000 (Reigber et al., 2002) and the other is GRACE

(Gravity Recovery and Climate Experiment) in 2002

(Tapley et al., 2004a). CHAMP is a single low-orbiting

satellite (400–450 km altitude) being tracked by the

high-altitude GPS satellites, and it also carries a

magnetometer to map the Earth’s magnetic field.

GRACE was more specifically dedicated to determin-

ing with extremely high accuracy the long to

medium wavelengths of the gravitational field and

their temporal variations. With two satellites in vir-

tually identical low Earth orbits, one following the

other, the primary data consist of intersatellite ranges

observed with K-band radar. The objective is to sense

changes in the gravitational field due to mass transfer

on the Earth within and among the atmosphere, the

hydrosphere/cryosphere, and the oceans (Tapley

et al., 2004b).
An Earth-orbiting satellite is the ideal platform on

which to measure the gravitational field when seek-

ing global coverage in relatively short time. One

simply designs the orbit to be polar and circular;
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and, as the satellite orbits, the Earth spins under-

neath, offering a different section of its surface on

each satellite revolution. There are also limitations.

First, the satellite must have low altitude to achieve

high sensitivity, since the nth-degree harmonics of

the field attenuate as R=rð Þn þ 1. On the other hand,

the lower the altitude, the shorter the life of the

satellite due to atmospheric drag, which can only be

countered with onboard propulsion systems. Second,

because of the inherent speed of lower-orbit satellites

(about 7 km s�1), the resolution of its measurements

is limited by the integration (averaging) time of the

sensor (typically 1–10 s). Higher resolution comes

only with shorter integration time, which may reduce

the accuracy if this depends on averaging out random

noise. Figure 8 shows the corresponding achievable

resolution on the Earth’s surface for different satellite

instrumentation parameters, length of time in polar

orbit and along-orbit integration time, or smoothing

(Jekeli, 2004). In each case, the indicated level of

resolution is warranted only if the noise of the sensor

(after smoothing) does not overpower the signal at

this resolution.
Both CHAMP and GRACE have yielded global

gravitational models by utilizing traditional satellite-

tracking methods and incorporating the range rate

appropriately as a tracking observation (timewise

approach). However, the immediate application of

eqn [125] suggests that gravitational differences can

be determined in situ and used to determine a model

for the global field directly. This is classified as the

spacewise approach. In fact, if the orbits are known

with sufficient accuracy (from kinematic orbit deter-

mination, e.g., by GPS), this procedure utilizes a

linear relationship between observations and
unknown harmonic coefficients:
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where Unm �; �; rð Þ ¼ R=rð Þnþ1 �Y nm �; �ð Þ and da, dc

are the last two terms in eqn [125]. Given the latter
and a set of line-of-sight accelerations, a theoretically
straightforward linear least-squares adjustment
solves for the coefficients. A similar procedure can
be used for gradients observed on an orbiting
satellite:
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where c comprises the rotational acceleration terms
in eqn [124].

In situ measurements of line-of-site acceleration
or of more local gradients would need to be reduced
from the satellite orbit to a well-defined surface (such
as a sphere) in order to serve as boundary values in a
solution to a BVP. However, the model for the field is
already in place, rooted in potential theory (trun-
cated series solution to Laplace’ equation), and one
may think of the problem more in terms of fitting a
three-dimensional model to a discrete set of observa-
tions. This operational approach can readily, at least
conceptually, be expanded to include observations
from many different satellite systems, even airborne
and ground-based observations.

Recently, a rather different theory has been con-
sidered by several investigators to model the
gravitational field from satellite-to-satellite tracking
observations. The method, first proposed by Wolff
(1969), makes use of yet another fundamental law: the
law of conservation of energy. Simply, the range rate
between two satellites implies an along-track velocity
difference, or a difference in kinetic energy.
Observing this difference leads directly, by the con-
servation law, to the difference in potential energy,
that is, the gravitational potential and other potential
energies associated with action forces and Earth’s
rotation. Neglecting the latter two, conservation of
energy implies

V ¼ 1
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Figure 8 Spatial resolution of satellite measurements

vs mission duration and integration time. The satellite
altitude is 450 km (after Jekeli, 2004) mo., month.

Reproduced by permission of American Geophysical

Union.
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where E0 is a constant. Taking the along-track differ-
ential, we have approximately

V x2ð Þ –V x1ð Þ ¼
d

dt
x1

�

�

�
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�

�

�

�

d

dt
	 ½129�

where dx2=dt – dx1=dtj j 
 d	=dt . This very rough
conceptual relationship between the potential differ-
ence and the range rate applies to two satellites closely
following each other in similar orbits. The precise
formulation is given by (Jekeli, 1999) and holds for
any pair of satellites, not just two low orbiters.
Mapping range rates between two polar orbiting satel-
lites (such as GRACE) yields a global distribution of
potential difference observations related again linearly
to a set of harmonic coefficients:
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The energy-based model holds for any two vehi-
cles in motion and equipped with the appropriate

ranging and accelerometry instrumentation. For

example, the energy conservation principle could

also be used to determine geopotential differences

between an aircraft and a satellite, such as a GPS

satellite (at which location the geopotential is known

quite well). The aircraft would require only a GPS

receiver (to do the ranging) and a set of acceler-

ometers (and gyros for orientation) to measure the

action forces (the same system components as in air-

borne accelerometry discussed above). Resulting

potential differences could be used directly to

model the geoid using Bruns’ equation.

3.02.6.2 Models

We have already noted the standard solution options

to the BVP using terrestrial gravimetry in the form of

gravity anomalies: the Green’s function approach,

Stokes integral, eqn [66], and the harmonic analysis

of surface data, either using the integrals [69] or

solving a linear system of equations (eqn [65] trun-

cated to finite degree) to obtain the coefficients, dCnm .

The integrals must be evaluated using quadratures,

and very fast numerical techniques have been devel-

oped when the data occupy a regular grid of

coordinates on the sphere or ellipsoid (Rapp and

Pavlis, 1990). Similar algorithms enable the fast solu-

tion of the linear system of eqns [65].

For a global harmonic analysis, the number
of coefficients, nmax þ 1ð Þ2, must not be greater
than the number of data. A general, conservative
rule of thumb for the maximum resolution (half-
wavelength) of a truncated spherical harmonic series
is, in angular degrees on the unit sphere,

�� ¼ 180	

nmax

Thus, data on a 1	 � 1	 angular grid of latitudes and
longitudes would imply nmax ¼ 180. The number of
data (64 800) is amply larger than the number of
coefficients (32 761). This majority suggests a least-
squares adjustment of the coefficients to the data, in
either method, especially because the data have
errors (Rapp, 1969). As nmax increases, a rigorous,
optimal adjustment usually is feasible, for a given
computational capability, only under restrictive
assumptions on the correlations among the errors of
the data. Also, the obvious should nevertheless be
noted that the accuracy of the model in any area
depends on the quality of the data in that area.
Furthermore, considering that a measurement con-
tains all harmonics (up to the level of measurement
error), the estimation of a finite number of harmonics
from boundary data on a given grid is corrupted by
those harmonics that are in the data but are not
estimated. This phenomenon is called aliasing in
spectral analysis and can be mitigated by appropriate
filtering of the data (Jekeli, 1996).

The optimal spherical harmonic model combines
both satellite and terrestrial data. The currently best
known model is EGM96 complete to degree and
order nmax ¼ 360 (Lemoine et al., 1998). It is an
updated model for WGS84 based on all available
satellite tracking, satellite altimetry, and land gravity
(and topographic) data up to the mid-1990s.
Scheduled to be revised again for 2006 using more
recent data, as well as results from the satellite mis-
sions, CHAMP and GRACE, it will boast a maximum
degree and order of 2160 (5’ resolution). In construct-
ing combination solutions of this type, great effort is
expended to ensure the proper weighting of observa-
tions in order to extract the most appropriate
information from the diverse data, pertaining to dif-
ferent parts of the spatial gravitational spectrum. The
satellite tracking data dominate the estimation of the
lower-degree harmonics, whereas the fine resolution
of the terrestrial data is most amenable to modeling
the higher degrees. It is beyond the present scope to
delve into the numerical methodology of combina-
tion methods. Furthermore, it is an unfinished story

Potential Theory and Static Gravity Field of the Earth 37



as new in situ satellite measurements from GRACE

and GOCE will affect the combination methods of

the future.
Stokes integral is used in practice only to take

advantage of local or regional data with higher reso-
lution than was used to construct the global models.

Even though the integral is a global integral, it can be

truncated to a neighborhood of the computation

point since the Stokes kernel attenuates rapidly as

the reciprocal distance. Moreover, the corresponding

truncation error may be reduced if the boundary

values exclude the longer-wavelength features of

the field. The latter constitute an adequate represen-

tation of the remote zone contribution and can be

included separately as follows. Let �g nmaxð Þ denote

the gravity anomaly implied by a spherical harmonic

model, such as given by eqn [65], truncated to

degree, nmax. From the orthogonality of spherical

harmonics, eqn [46], it is easy to show that
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Thus, given a spherical harmonic model
�Cnmj2 � n � nmax; – n � m � nf g, we first remove

the model in terms of the gravity anomaly and then
restore it in terms of the disturbing potential, chan-
ging Stokes formula [66] to

T �; �; rð Þ ¼ R

4�

Z Z

�

�g �9; �9; Rð Þ –�g nmaxð Þ �9; �9; Rð Þ
� 	

� S c; rð Þd�þ T nmaxð Þ �; �; rð Þ ½132�

In theory, if �g nmaxð Þ has no errors, then the residual

�g –�g nmaxð Þ excludes all harmonics of degree
n � nmax, and orthogonality would also allow the
exclusion of these harmonics from S. Once the inte-
gration is limited to a neighborhood of �; �; Rð Þ, as it
must be in practice, there are a number of ways to
modify the kernel so as to minimize the resulting
truncation error (Sjöberg, 1991, and references
therein). The removal and restoration of a global
model, however, is the key aspect in all these
methods.

In practical applications, the boundary values are
on the geoid, being the surface that satisfies the
boundary condition of the Robin BVP (i.e., we

require the normal derivative on the boundary and

measured gravity is indeed the derivative of the

potential along the perpendicular to the geoid). The

integral in eqn [132] thus approximates the geoid by

a sphere. Furthermore, it is assumed that no masses

exist external to the geoid. Part of the reduction to

the geoid of data measured on the Earth’s surface

involves redistributing the topographic masses on or

below the geoid. This redistribution is undone out-

side the solution to the BVP (i.e., Stokes integral) in

order to regain the disturbing potential for the actual

Earth. Conceptually, we may write

TP ¼
R

4�

Z Z

�

�g –�g nmaxð Þ – �c
� 	

P 0
SP; P 0d�

þ T
nmaxð Þ

P þ �TP ½133�

where dc is the gravity reduction that brings the
gravity anomaly to a geoid with no external masses,
and dTP is the effect (called indirect effect) on the
disturbing potential due to the inverse of this reduc-
tion. This formula holds for T anywhere on or above
the geoid and thus can also be used to determine the
geoid undulation according to Bruns’ formula [3].

3.02.7 The Geoid and Heights

The traditional reference surface, or datum, for

heights is the geoid (Section 3.02.1.3). A point at

mean sea level usually serves as starting point

(datum origin) and this defines the datum for vertical

control over a region or country. The datum (or

geoid) is the level continuation of the reference sur-

face under the continents, and the determination of

gravity potential differences from the initial point to

other points on the Earth’s suface, obtained by level-

ing and gravity measurements, yields heights with

respect to that reference (or in that datum). The

gravity potential difference, known as the geopoten-

tial number, at a point, P, relative to the datum origin,
�P0, is given by (since gravity is the negative vertical

derivative of the gravity potential)

CP ¼ W0 –WP ¼
Z P

�P0

g dn ½134�

where g is gravity (magnitude), dn is a leveling incre-
ment along the vertical direction, and W0 is the
gravity potential at �P0. By the conservative nature
of the gravity potential, whatever path is taken for the
integral yields a unique geopotential number for P.
From these potential differences, one can define var-
ious types of height, for example, the orthometric
height (Figure 3):
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HP ¼
CP

�gP

½135�

where

�g P ¼
1

HP

Z P

P0

g dH ½136�

is the average value of gravity along the plumb line
from the geoid at P0 to P. Other height systems are
also in use (such as the normal and dynamic heights),
but they all rely on the geopotential number (see
Heiskanen and Moritz, 1967, chapter 4, for details).

For a particular height datum, there is theoreti-
cally only one datum surface (the geoid). But access
to this surface is far from straightforward (other than
at the defined datum origin). If �P0 is defined at mean
sea level, other points at mean sea level are not on the
same level (datum) surface, since mean sea level, in
fact, is not level. Erroneously assuming that mean sea
level is an equipotential surface can cause significant
distortions in the vertical control network of larger
regions, as much as several decimeters. This was the
case, for example, for the National Geodetic Vertical
Datum of 1929 in the US for which 26 mean sea level
points on the east and west coasts were assumed to lie
on the same level surface. Accessibility to the geoid
(once defined) at any point is achieved either with
precise leveling and gravity (according to eqns [134]
and [135]), or with precise geometric vertical posi-
tioning and knowledge of the gravity potential.
Geometric vertical positioning, today, is obtained
very accurately (centimeter accuracy or even better)
with differential GPS. Suppose that an accurate grav-
ity potential model is also available in the same
coordinate system as used for GPS. Then, determin-
ing the GPS position at �P0 allows the evaluation of
the gravity potential, W0, of the datum. Access to the
geoid at any other point, P, or equivalently, deter-
mining the orthometric height, HP , can be done by
first determining the ellipsoidal height, h, from GPS.
Then, as shown in Figure 3,

HP ¼ hP –N ½137�

where, with T ¼ W –U evaluated on the geoid,
Bruns’ extended equation (Section 3.02.1) yields

N ¼ T=� – W0 –U0ð Þ=� ½138�

where U0 is the normal gravity potential of the nor-
mal ellipsoid.

In a sense, the latter is a circular problem: deter-
mining N requires N in order to locate the point on
the geoid where to compute T. However, the

computation of T on the geoid can be done with
assumptions on the density of the topographic masses
above the geoid and a proper reduction to the geoid,
using only an approximate height. Indeed, since the
vertical gradient of the disturbing potential is the
gravity disturbance, of the order of 5� 10�4 m s�2, a
height error of 20 m leads to an error of 10�2 m2 s�2

in T, or just 1 mm in the geoid undulation. It should be
noted that a model for the disturbing potential as a
series of spherical harmonics, for example, derived
from satellite observations, satisfies Laplace’s equation
and, therefore, does not give the correct disturbing
potential at the geoid (if it lies below the Earth’s sur-
face where Laplace’s equation does not hold).

The ability to derive orthometric heights (or other
geopotential-related heights) from GPS has great
economical advantage over the laborious leveling
procedure. This has put great emphasis on obtaining
an accurate geoid undulation model for land areas.
Section 3.02.6 briefly outlined the essential methods
to determine the geoid undulation from a combina-
tion of spherical harmonics and an integral of local
gravity anomalies. When dealing with a height datum
or the geoid, the constant N0 ¼ – W0 –U0ð Þ=�
requires careful attention. It can be determined by
comparing the geoid undulation computed according
to a model that excludes this term (such as eqn [133])
with at least one geoid undulation (usually many)
determined from leveling and GPS, according to
eqn [137]. Vertical control and the choice of height
datum are specific to each country or continent,
where a local mean sea level was the adopted
datum origin. Thus, height datums around the
world are ‘local geoids’ that have significant differ-
ences between them. Investigations and efforts have
been under way for more than two decades to define
a global vertical datum; however, it is still in the
future, awaiting a more accurate global gravity
potential model and, perhaps more crucially, a con-
sensus on what level surface the global geoid should
be.

On the oceans, the situation is somewhat less
complicated. Oceanographers who compute sea-sur-
face topography from satellite altimetry on the basis
of eqn [137] depend critically on an accurate geoid
undulation, or equivalently on an accurate model of
T. However, no reduction of the disturbing potential
from mean sea level to the geoid is necessary, the
deviation being at most 2 m and causing an error in
geoid undulation of less than 0.1 mm. Thus, a sphe-
rical harmonic model of T is entirely appropriate.
Furthermore, it is reasonable to ensure that the
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constant, W0 –U0, vanishes over the oceans. That is,

one may choose the geoid such that it best fits mean

sea level and choose an ellipsoid that best fits this

geoid. It means that the global average value of the

geoid undulation should be zero (according to eqn

[138]). The latter can be achieved with satellite alti-

metry and oceanographic models of sea surface

topography (Bursa et al., 1997).
Several interesting and important distinctions

should be made in regard to the tidal effects on the

geoid. The Sun and the Moon generate an appreci-

able gravitational potential near the Earth (the other

planets may be neglected). In an Earth-fixed coordi-

nate system, this extraterrestrial potential varies in

time with different periods due to the relative

motions of the Moon and Sun, and because of

Earth’s rotation (Torge, 2001, p. 88). There is also a

constant part, the permanent tidal potential, repre-

senting the average over time. It is not zero, because

the Earth–Sun–Moon system is approximately

coplanar. For each body with mass, MB , and distance,

rB , from the Earth’s center, this permanent part is

given by

V B
c �; rð Þ ¼ 3

4
GMB

r 2

r 2
B

3 cos2� – 1
� � 1

2
sin2" –

1

3

� �

½139�

where " is the angle of the ecliptic relative to the
equator ("
 23	 449). Using nominal parameter
values for the Sun and the Moon, we obtain at
mean Earth radius, R ¼ 6371km,

V sþm
c �; Rð Þ ¼ – 0:97 3 cos2� – 1

� �

m2 s – 2 ½140�

The gravitational potential from the Sun and
Moon also deforms the quasi-elastic Earth’s masses

with the same periods and similarly includes a con-

stant part. These mass displacements (both ocean and

solid Earth) give rise to an additional indirect change

in potential, the tidal deformation potential (there are

also secondary indirect effects due to loading of the

ocean on the solid Earth, which can be neglected in

this discussion; see Chapter 3.06). The indirect effect

is modeled as a fraction of the direct effect (Lambeck,

1988, p. 254), so that the permanent part of the tidal

potential including the indirect effect is given by

�V sþm
c �; Rð Þ ¼ 1þ k2ð ÞV sþm

c �; Rð Þ ½141�

where k2 ¼ 0:29 is Love’s number (an empirical
number based on observation). This is also called
the mean tide potential.

The mean tidal potential is inherent in all our
terrestrial observations (the boundary values) and
cannot be averaged away; yet, the solutions to the
BVP assume no external masses. Therefore, in prin-
ciple, the effect of the tide potential including its
mean, or permanent, part should be removed from
the observations prior to applying the BVP solutions.
On the other hand, the permanent indirect effect is
not that well modeled and arguably should not be
removed; after all, it contributes to the Earth’s shape
as it actually is in the mean. Three types of tidal
systems have been defined to distinguish between
these corrections. A mean quantity refers to the quan-
tity with the mean tide potential retained (but time-
varying parts removed); a nontidal quantity implies
that all tidal effects (time-varying, permanent, direct
and indirect effects) have been removed computa-
tionally; and the zero-tide quantity excludes all time-
varying parts and the permanent direct effect, but it
retains the indirect permanent effect.

If the geoid (an equipotential surface) is defined
solely by its potential, W0, then a change in the poten-
tial due to the tidal potential, V tide (time-varying and
constant parts, direct and indirect effects), implies that
the W0-equipotential surface has been displaced. The
geoid is now a different surface with the same W0.
This displacement is equivalent to a change in geoid
undulation, dN ¼ V tide=�, with respect to some pre-
defined ellipsoid. The permanent tidal effect (direct
and indirect) on the geoid is given by

� �N �ð Þ ¼ – 0:099 1þ k2ð Þ 3 cos2 � – 1
� �

m ½142�

If N represents the instantaneous geoid, then the
geoid without any tidal effects, that is, the nontidal
geoid, is given by

Nnt ¼ N – �N ½143�

The mean geoid is defined as the geoid with all but
the mean tidal effects removed:

�N ¼ N – �N – � �Nð Þ ½144�

This is the geoid that could be directly observed, for
example, using satellite altimetry averaged over time.
The zero-tide geoid retains the permanent indirect
effect, but no other tidal effects:

Nz ¼ N – �N þ 0:099k2 3 cos2 � – 1
� �� �

m ½145�

The difference between the mean and zero-tide
geoids is, therefore, the permanent component of
the direct tidal potential. We note that, in principle,
each of the geoids defined above, has the same
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potential value, W0, in its own field. That is, with
each correction, we define a new gravity field and the
corresponding geoid undulation defines the equipo-
tential surface in that field with potential value given
by W0. This is fundamentally different than what
happens in the case when the geoid is defined as a
vertical datum with a specified datum origin point. In
this case one needs to consider also the vertical dis-
placement of the datum point due to the tidal
deformation of the Earth’s surface. The potential of
the datum then changes because of the direct tidal
potential, the indirect effect due to mass changes, and
the indirect effect due to the vertical displacement of
the datum (for additional details, see Jekeli (2000b)).
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