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3.06.1 Introduction

The Earth tides are the motions induced in the solid

Earth, and the changes in its gravitational potential,

induced by the tidal forces from external bodies.

(These forces, acting on the rotating Earth, also induce

motions of its spin axis, treated in Chapter 3.10). Tidal

fluctuations have three roles in geophysics: measure-

ments of them can provide information about the Earth;

models of them can be used to remove tidal variations

from measurements of something else; and the same

models can be used to examine tidal influence on some

phenomenon. An example of the first role would be

measuring the nearly diurnal resonance in the gravity

tide to estimate the flattening of the core–mantle

boundary (CMB); of the second, computing the

expected tidal displacements at a point so we can better

estimate its position with the Global Positioning

System (GPS); and of the third, finding the tidal stresses

to see if they trigger earthquakes. The last two activities

are possible because the Earth tides are relatively easy

to model quite accurately; in particular, these are much

easier to model than the ocean tides are, both because

the Earth is more rigid than water, and because the

geometry of the problem is much simpler.
For modeling the tides it is an advantage that

they can be computed accurately, but an unavoidable

consequence of such accuracy is that it is difficult to

use Earth-tide measurements to find out about the

Earth. The Earth’s response to the tides can be
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described well with only a few parameters; even

knowing those few parameters very well does not

provide much information. This was not always true;

in particular, in 1922 Jeffreys used tidal data to

show that the average rigidity of the Earth was much

less than that of the mantle, indicating that the core

must be of very low rigidity (Brush, 1996). But subse-

quently, seismology has determined Earth structure in

much more detail than could be found with tides.

Recently, Earth tides have become more important

in geodesy, as the increasing precision of measure-

ments has required corrections for tidal effects that

could previously be ignored, This chapter therefore

focuses on the theory needed to compute tidal effects

as accurately as possible, with less attention to tidal

data or measurement techniques; though of course the

theory is equally useful for interpreting tidal data, or

phenomena possibly influenced by tides.
There are a number of reviews of Earth tides

available; the best short introduction remains that of

Baker (1984). Melchior (1983) describes the subject

fully (and with a very complete bibliography), but is

now somewhat out of date, and should be used with

caution by the newcomer to the field. The volume

of articles edited by Wilhelm et al. (1997) is a better

reflection of the current state of the subject, as are the

quadrennial International Symposia on Earth Tides (e.g.,

Jentzsch, 2006). Harrison (1985) reprints a number of

important papers, with very thoughtful commentary;

Cartwright (1999) is a history of tidal science (mostly

the ocean tides) that also provides an interesting

introduction to some aspects of the field – which, as

one of the older parts of geophysics, has a terminol-

ogy sometimes overly affected by history.

3.06.1.1 An Overview

Figure 1 is a simple flowchart to indicate what goes
into a tidal signal. We usually take the tidal forcing to
be completely known, but it is computed using a
particular theory of gravity, and it is actually the
case that Earth-tide measurements provide some
of the best evidence available for general relativity
as opposed to some other alternative theories
(Warburton and Goodkind, 1976). The large box
labeled Geophysics/oceanography includes the
response of the Earth and ocean to the forcing,
with the arrow going around it to show that some
tides would be observed even if the Earth were
oceanless and rigid. Finally, measurements of Earth
tides can detect other environmental and tectonic
signals.

At this point it is useful to introduce some termi-
nology. The ‘theoretical tides’ could be called the
modeled tides, since they are computed from a set
of models. The first model is the tidal forcing, or
‘equilibrium tidal potential’, produced by external
bodies; this is computed from gravitational and
astronomical theory, and is the tide at point E in
Figure 1. The next two models are those that
describe how the Earth and ocean respond to this
forcing; in Figure 1 these are boxes inside the large
dashed box. The solid-Earth model gives what are
called the ‘body tides’, which are what would be
observed on an oceanless but otherwise realistic
Earth. The ocean model (which includes both the
oceans and the elastic Earth) gives the ‘load tides’,
which are changes in the solid Earth caused by the
shifting mass of water associated with the ocean tides.
These two responses sum to give the total tide

Celestial
bodies

+Gravity
theory

Earth
orbit/rotation

Tidal
forces

Solid Earth
and core

Ocean
loading

+ Site
distortions

+ +

E

T

Tidal
signal

Environmental
data

Environment
and tectonics

Direct attraction

Geophysics/oceanography

Nontidal signals

Total signal

Figure 1 Tidal flowchart. Entries in italics represent things we know (or think we know) to very high accuracy; entries in

boldface (over the dashed boxes) represent things we can learn about using tidal data. See text for details.
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caused by the nonrigidity of the Earth; the final

model, labeled ‘site distortions’, may be used to

describe how local departures from idealized models

affect the result (Section 3.06.6.1). This nonrigid con-

tribution is summed with the tide from direct

attraction to give the total theoretical tide, at point

T in the flowchart.
Mathematically, we can describe the processes

shown on this flowchart in terms of linear systems,

something first applied to tidal theory by Munk

and Cartwright (1966). The total signal y(t) is repre-

sented by

yðtÞ ¼
Z

x Tðt – �Þw Tð�Þd� þ nðtÞ ½1�

where xT(t) is the tidal forcing and n(t) is the
noise (nontidal energy, from whatever source).
The function w(t) is the impulse response of the
system to the tidal forcing. Fourier transforming
eqn [1], and disregarding the noise, gives
Y( f )¼WT( f )XT( f ): W( f ) is the ‘tidal admittance’,
which turns out to be more useful than w(t), partly
because of the bandlimited nature of XT, but also
because (with one exception) W( f ) turns out to be
a fairly smooth function of frequency. To predict
the tides we assume W( f ) (perhaps guided by pre-
vious measurements); to analyze them, we determine
W( f ).

We describe the tidal forcing first, in some detail
because the nature of this forcing governs the

response and how tidal measurements are analyzed.

We next consider how the solid Earth responds to the

tidal forcing, and what effects this produces. After

this we discuss the load tides, completing what we

need to know to produce the full theoretical tides.

We conclude with brief descriptions of analysis

methods appropriate to Earth-tide data, and instru-

ments for measuring Earth tides.

3.06.2 The Tidal Forces

The tidal forces arise from the gravitational attrac-

tion of bodies external to the Earth. As noted above,

computing them requires only some gravitational

potential theory and astronomy, with almost no geo-

physics. The extraordinarily high accuracy of

astronomical theory makes it easy to describe the

tidal forcing to much more precision than can be

measured: perhaps as a result, in this part of the

subject the romance of the next decimal place has

exerted a somewhat excessive pull.
Our formal derivation of the tidal forcing will use

potential theory, but it is useful to start by considering

the gravitational forces exerted on one body (the Earth,

in this case) by another. As usual in discussing gravita-

tion, we work in terms of accelerations. Put most

simply, the tidal acceleration at a point on or in the

Earth is the difference between the acceleration caused

by the attraction of the external body and the orbital

acceleration – which is to say, the acceleration which

the Earth undergoes as a whole. This result is valid

whatever the nature of the orbit – it would hold just as

well if the Earth were falling directly toward another

body. For a spherically symmetric Earth the orbital

acceleration is the acceleration caused by the attraction

of the other body at the Earth’s center of mass, making

the tidal force the difference between the attraction

at the center of mass, and that at the point of

observation.
Figure 2 shows the resulting force field. At the

point directly under the attracting body (the ‘sub-

body point’), and at its antipode, the tidal force is

oppositely directed in space, though in the same way

(up) viewed from the Earth. It is in fact larger at the

sub-body point than at its antipode, though if the

ratio a/R is small (1/60 for the forces plotted in

Figure 2) the difference is also small.
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Figure 2 Tidal forcing. On the left is the geometry of the problem for computing the tidal force at a point O on the Earth,
given an external body M. The right plot shows the field of forces (accelerations) for the actual Earth–Moon separation; the

scale of the largest arrow is 1.14 mm s�2 for the Moon, and 0.51 mm s�2 for the Sun. The elliptical line shows the equipotential

surface under tidal forcing, greatly exaggerated.
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3.06.2.1 The Tidal Potential

We now derive an expression for the tidal force – or

rather, for the more useful ‘tidal potential’, following

the development in Munk and Cartwright (1966). If

Mext is the mass of the external body, the gravita-

tional potential, Vtot, from it at O is

Vtot¼
GM ext

�
¼ GM ext

R

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ða=RÞ2 – 2ða=RÞcos�

q

using the cosine rule from trigonometry. The vari-
ables are as shown in Figure 2: a is the distance of O
from C, � the distance from O to M, and � the
angular distance between O and the sub-body point
of M. We can write the square-root term as a sum of
Legendre polynomials, using the generating-function
expression for these, which yields

V tot¼
GM ext

R

X1
n¼0

a

R

� �n

Pnðcos�Þ ½2�

where P2(x)¼ (1/2)(3x2� 1) and P3(x)¼ (1/2)
(5x3� 3x).

The n¼ 0 term is constant in space, so its gradient
(the force) is zero, and it can be discarded. The n¼ 1

term is

GM ext

R2
a cos� ¼ GM ext

R2
x1 ½3�

where x1 is the Cartesian coordinate along the C–M
axis. The gradient of this is a constant, corresponding
to a constant force along the direction to M; but this
is just the orbital force at C, which we subtract to get
the tidal force. Thus, the tidal potential is eqn [2]
with the two lowest terms removed:

V tidðtÞ ¼
GM ext

RðtÞ
X1
n¼2

a

RðtÞ

� �n

Pn½cos�ðtÞ� ½4�

where we have made R and �, as they actually are,
functions of time t – which makes V such a function
as well.

We can now put in some numbers appropriate to
the Earth and relevant external bodies to get a sense of

the magnitudes of different terms. If r is the radius of the

Earth, a/R¼ 1/60 for the Moon, so that the size of terms

in the sum [4] decreases fairly rapidly with increasing n;

in practice, we need to only consider n¼ 2 and n¼ 3,

and perhaps n¼ 4 for the highest precision; the n¼ 4

tides are just detectable in very low noise gravimeters.

These different values of n are referred to as the degree-

n tides. For the Sun, r/R¼ 1/23 000, so the degree-2

solar tides completely dominate.

If we consider n¼ 2, the magnitude of Vtid is
proportional to GMext/R3. If we normalize this quan-
tity to make the value for the Moon equal to 1, the
value for the Sun is 0.46, for Venus 5� 10�5, and for
Jupiter 6� 10�6, and even less for all other planets.
So the ‘lunisolar’ tides dominate, and are probably
the only ones visible in actual measurements –
though, as we will see, some expansions of the tidal
potential include planetary tides.

At very high precision, we also need to consider
another small effect: the acceleration of the Earth is
exactly equal to the attraction of the external body at
the center of mass only for a spherically symmetric
Earth. For the real Earth, the C20 term in the gravita-
tional potential makes the acceleration of the Moon
by the Earth (and hence the acceleration of the Earth
by the Moon) depend on more than just eqn [3]. The
resulting Earth-flattening tides (Wilhelm, 1983;
Dahlen, 1993) are however small.

We can get further insight on the behavior of the
tidal forces if we use geographical coordinates, rather
than angular distance from the sub-body point.
Suppose our observation point O is at colatitude �
and east longitude � (which are fixed) and that the
sub-body point of M is at colatitude �9(t) and east
longitude �9(t). Then we may apply the addition
theorem for spherical harmonics to get, instead of [4],

V tid ¼
GM ext

RðtÞ
X1
n¼2

a

RðtÞ

� �n
4�

2nþ 1

�
Xn

m¼ – n

Y �nmð�9ðtÞ; �9ðtÞÞYnmð�; �Þ ½5�

where we have used the fully normalized complex
spherical harmonics defined by

Ynmð�; �Þ ¼ N m
n Pm

n ðcos �Þeim�

where

N m
n ¼ ð – 1Þm 2nþ 1

4�

ðn –mÞ!
ðnþ mÞ!

� �1=2

is the normalizing factor and Pm
n is the associated

Legendre polynomial of degree n and order m

(Table 1).

Table 1 Associated Legendre functions

P0
2 ð�Þ ¼ 1

2 ð3 cos2� – 1Þ P0
3ð�Þ ¼ 1

2 ð5cos3� – 3 cos �Þ
P1

2 ð�Þ ¼ 3 sin � cos � P1
3ð�Þ ¼ 3

2 ð5cos2� – 1Þ
P2

2 ð�Þ ¼ 3 sin2� P2
3ð�Þ ¼ 15sin2� cos �

P3
3ð�Þ ¼ 15sin3�
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As is conventional, we express the tidal potential
as Vtid/g, where g is the Earth’s gravitational accel-

eration; this combination has the dimension of length,

and can easily be interpreted as the change in eleva-

tion of the geoid, or of an equilibrium surface such as
an ideal ocean (hence its name, the ‘equilibrium

potential’). Part of the convention is to take g to

have its value on the Earth’s equatorial radius a eq; if

we hold r fixed at that radius in [5], we get

Vtid

g
¼ a eq

Mext

ME

X1
n ¼ 2

4�

2nþ 1

a eq

R

� �nþ1

�
Xn

m ¼ – n

Y �nmð�9; �9ÞYnmð�; �Þ

¼
X1
n ¼ 2

Kn

4�

2nþ 1
�nþ1

�
Xn

m ¼ – n

Y �nmð�9; �9ÞYnmð�; �Þ ½6�

where the constant K includes all the physical
quantities:

Kn ¼ aeq
Mext

ME

aeq

R

� �nþ1

where M E is the mass of the Earth and R is the mean
distance of the body; the quantity � ¼ R=R expresses
the normalized change in distance. For the Moon, K2

is 0.35837 m, and for the Sun, 0.16458 m.
In both [5] and [6], we have been thinking of � and

� as giving the location of a particular place of observa-

tion; but if we consider them to be variables, the Ynm(�,

�) describes the geographical distribution of V/g on the

Earth. The time dependence of the tidal potential

comes from time variations in R, �9, and �9. The first

two change relatively slowly because of the orbital
motion of M around the Earth; �9 varies approximately

daily as the Earth rotates beneath M. The individual

terms in the sum over m in [6] thus separate the tidal

potential of degree n into parts, called ‘tidal species’,

that vary with frequencies around 0, 1, 2, . . ., n times

per day; for the largest tides (n¼ 2), there are three

such species. The diurnal tidal potential varies once per

day, and with colatitude as sin � cos �: it is largest at

mid-latitudes and vanishes at the equator and the poles.

The semidiurnal part (twice per day) varies as sin2 �
and so is largest at the equator and vanishes at the poles.

The long-period tide varies as 3 cos2 �� 1, and so is

large at the pole and (with reversed sign) at the equator.
As we will see, these spatial dependences do not carry

over to those tides, such as strain and tilt, that depend

on horizontal gradients of the potential.

To proceed further it is useful to separate the time-
dependent and space-dependent parts a bit more
explicitly. We adopt the approach of Cartwright and
Tayler (1971) who produced what was, for a long time,
the standard harmonic expansion of the tidal potential.
We can write [6] as

Vtid

g
¼
X1
n¼2

Kn�
nþ1 4�

2nþ 1

�
Yn0ð�9; �9ÞYn0ð�; �Þ

þ
Xn

m¼1

Y �n –mð�9; �9ÞYn –mð�; �Þ

þ Y �nmð�9; �9ÞYnmð�; �Þ
�

¼
X1
n¼2

Kn�
nþ1 4�

2nþ 1

�
Yn0ð�9; �9ÞYnoð�; �Þ

þ
Xn

m¼1

2R½Y �nmð�9; �9ÞYnmð�; �Þ�
�

Now define complex (and time-varying) coefficients
TnmðtÞ ¼ am

n ðtÞ þ ibm
n ðtÞ such that

V tid

g
¼ R

X1
n¼2

Xn

m¼0

T �nmðtÞYnmð�; �Þ
" #

½7�

¼
Xn¼1
n¼2

Xn

m¼0

N m
n Pm

n ðcos �Þ½am
n ðtÞcos m�

þ bm
n ðtÞsin m��

½8�

Then the Tnm coefficients are, for m equal to 0,

Tn0 ¼
4�

2nþ 1

� �1=2

Kn�
nþ1P0

nðcos �9Þ ½9�

and, for m not equal to 0,

Tnm ¼ ð – 1Þm 8�

2nþ 1
Kn�

nþ1N m
n Pm

n ð�9Þei�9 ½10�

from which we can find the real-valued, time-varying
quantities am

n ðtÞ and bm
n ðtÞ, which we will use below in

computing the response of the Earth.

3.06.2.2 Computing the Tides: Direct
Computation

Equations [7]–[10] suggest a straightforward way
to compute the tidal potential (and, as we will see,
other theoretical tides). First, use a description of the
location of the Moon and Sun in celestial coordinates
(an ephemeris); other planets can be included if we
wish. Then convert this celestial location to the geo-
graphical coordinates �9 and �9 of the sub-body
point, and the distance R, using standard transforma-
tions (McCarthy and Pétit, 2004, Chapter 4). Finally,
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use eqns [9] and [10] to get Tnm (t). Once we have the
Tnm, we can combine these with the spatial factors in
[7] to get Vtid/g, either for a specific location or as a
distribution over the whole Earth. As we will see, we
can vary the spatial factors to find, not just the poten-
tial, but other observables, including tilt and strain,
all with no changes to the Tnm; we need to do the
astronomy only once.

A direct computation has the advantage, com-
pared with the harmonic methods (discussed below)
of being limited in accuracy only by the accuracy of
the ephemeris. If we take derivatives of [10] with
respect to R, �9, and �9, we find that relative errors
of 10�4 in Vtid/g would be caused by errors of
7� 10�5 rad (140) in �9 and �9, and 3� 10�5 in �.
(We pick this level of error because it usually exceeds
the accuracy with which the tides can be measured,
either because of noise or because of instrument
calibration.) The errors in the angular quantities cor-
respond to errors of about 400 m in the location of the
sub-body point, so our model of Earth rotation, and
our station location, needs to be good to this level –
which requires 1 s accuracy in the timing of the data.

Two types of ephemerides are available: analytical,
which provide a closed-form algebraic description of
the motion of the body; and the much more precise
numerical ephemerides, computed from numerical
integration of the equations of motion, with para-
meters chosen to best fit astronomical data. While
numerical ephemerides are more accurate, they are
less convenient for most users, being available only as
tables; analytical ephemerides are or can be made
available as computer code.

The first tidal-computation program based directly
on an ephemeris was that of Longman (1959), still in use
for making rough tidal corrections for gravity surveys.
Longman’s program, like some others, computed accel-
erations directly, thus somewhat obscuring the utility of
an ephemeris-based approach to all tidal computations.
Munk and Cartwright (1966) applied this method for
the tidal potential. Subsequent programs such as those
of Harrison (1971), Broucke et al. (1972), Tamura
(1982), and Merriam (1992) used even more precise
ephemerides based on subsets of Brown’s lunar theory.

Numerical ephemerides have been used primarily
to produce reference time series, rather than for
general-purpose programs, although the current
IERS standards use such a method for computing
tidal potentials and displacements (with corrections
described in Section 3.06.3.2.2). Most precise calcula-
tions (e.g., Hartmann and Wenzel, 1995) have relied
on the numerical ephemerides produced by JPL

(Standish et al., 1992). The resulting tidal series
form the basis for a harmonic expansion of the tidal
potential, a standard method to which we now turn.

3.06.2.3 Computing the Tides (I): Harmonic
Decompositions

Since the work of Thomson and Darwin in the 1870s
and 1880s, the most common method of analyzing
and predicting the tides, and of expressing tidal beha-
vior, has been through a ‘harmonic expansion’ of the
tidal potential. In this, we express the Tnm as a sum of
sinusoids, whose frequencies are related to combina-
tions of astronomical frequencies and whose
amplitudes are determined from the expressions in
the ephemerides for R, �9, and �9. In such an expan-
sion, we write the complex Tnm’s as

TnmðtÞ ¼
XKnm

k¼1

Aknm exp ið2�fknmt þ jknmÞ½ � ½11�

where, for each degree and order we sum Knm sinu-
soids with specified real amplitudes, frequencies, and
phases A, f, and j. The individual sinusoids are called
‘tidal harmonics’ (not the same as the spherical har-
monics of Section 3.06.2.1).

This method has the conceptual advantage of
decoupling the tidal potential from the details of
astronomy, and the practical advantage that a table
of harmonic amplitudes and frequencies, once pro-
duced, is valid over a long time. Such an expansion
also implicitly puts the description into the frequency
domain, something as useful here as in other parts of
geophysics. We can use the same frequencies for any
tidal phenomenon, provided that it comes from a
linear response to the driving potential – which is
essentially true for the Earth tides. So, while this
expansion was first used for ocean tides (for which
it remains the standard), it works just as well for Earth
tides of any type.

To get the flavor of this approach, and also intro-
duce some terminology, we consider tides from a
very simple situation: a body moving at constant
speed 	 in a circular orbit, the orbital plane being
inclined at an angle " to the Earth’s equator. The
angular distance from the ascending node (where the
orbit plane and the equatorial plane intersect) is 	t.
The rotation of the Earth, at rate �, causes the
terrestrial longitude of the ascending node to be �t ;
since the ascending node is fixed in space, � corre-
sponds to one revolution per sidereal day. We further
assume that at t¼ 0 the body is at the ascending node

168 Earth Tides



and longitude 0� is under it. Finally, we take just the
real part of [6], and do not worry about signs.

With these simplifications we consider first the
diurnal degree-2 tides (n¼ 2, m¼ 1). After some
tedious spherical trigonometry and algebra, we find
that

V=g ¼K2
6�

5

� �
½sin " cos " sin �t

þ 1

2
sin "ð1þ cos "Þsinð� – 2	Þt

þ 1

2
sin "ð1 – cos "Þsinð�þ 2	Þt �

This shows that the harmonic decomposition
includes three harmonics, with arguments (of time)
�, �� 2	, and �þ 2	; their amplitudes depend on
", the inclination of the orbital plane. If " were zero,
there would be no diurnal tides at all. For our simple
model, a reasonable value of " is 23.44�, the inclina-
tion of the Sun’s orbital plane, and the mean
inclination of the Moon’s. These numbers produce
the harmonics given in Table 2, in which the fre-
quencies are given in cycles per solar day (cpd). Both
the Moon and Sun produce a harmonic at 1 cycle per
sidereal day. For the Moon, 	 corresponds to a period
of 27.32 days (the tropical month) and for the Sun
365.242 days (one year), so the other harmonics are at
�2 cycles per month, or �2 cycles per year, from
this. Note that there is not a harmonic at 1 cycle per
lunar (or solar) day – this is not unexpected, given the
degree-2 nature of the tidal potential.

It is convenient to have a shorthand way of
referring to these harmonics; unfortunately the
standard naming system, now totally entrenched,
was begun by Thomson for a few tides, and then
extended by Darwin in a somewhat ad hoc manner.

The result is a series of conventional names that

simply have to be learned as is (though only the

ones for the largest tides are really important). For

the Moon, the three harmonics have the Darwin

symbols K1, O1, and OO1; for the Sun they are K1

(again, since this has the same frequency for any

body), P1, and �1.
For the semidiurnal (m¼ 2 case), the result is

V=g ¼K2
24�

5

� �
½ð1 – cos2"Þ cos 2�t þ 1

2
ð1þ cos "Þ2

�cosð2� – 2	Þt þ 1

2
1 – cos "ð Þ2cos 2�þ 2	ð Þt �

again giving three harmonics, though for " equal to
23.44�, the third one is very small. Ignoring the last
term, we have two harmonics, also listed in Table 2.
The Darwin symbol for the first argument is K2;
again, this frequency is the same for the Sun and
the Moon, so these combine to make a lunisolar
tide. The second argument gives the largest tides:
for the Moon, M2 (for the Moon) or S2 (for the
Sun), at precisely 2 cycles per lunar (or solar) day,
respectively.

Finally, the m¼ 0, or long-period, case has

V=g ¼ K2
�

5

� �
1:5sin2 " – 1
	 


– 1:5sin2 " cos 2	t
� �

which gives one harmonic at zero frequency (the so-
called ‘permanent tide’), and another with an argu-
ment of 2	, making tides with frequencies of 2 cycles
per month (Mf, the fortnightly tide, from the Moon)
and 2 cycles per year (Ssa, the semiannual tide, from
the Sun).

This simple model demonstrates another impor-
tant attribute of the tides, arising from the

dependence on the orbital inclination ". For the

Sun this is nearly invariant, but for the Moon it varies

Table 2 Tidal constituents (simple model)

Argument
Moon Sun

Freq. (cpd) Amp. (m) Freq. (cpd) Amp. (m)

Long-period tides

0.000000 0.217 0.000000 0.100

2	 0.073202 0.066 0.005476 0.030
Diurnal tides

� 1.002738 0.254 1.002738 0.117

� – 2	 0.929536 0.265 0.997262 0.122

�þ2	 1.075940 0.011 1.008214 0.005
Semidiurnal tides

2� 2.005476 0.055 2.005476 0.025

2� – 2	 1.932274 0.640 2.000000 0.294
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by �5.13� from the mean, with a period of 18.61

years. This produces a variation in amplitude in all

the lunar tides, which is called the ‘nodal modula-

tion’. The simple expressions show that the resulting

variation is �18% for O1, and �3% for M2. Such a

modulated sinusoid can be written as

cos!0tð1þ A cos!mtÞ, with !0 � !m; this is equal to

cos !0t þ 1

2
A cos½ð!0 þ !mÞt � þ

1

2
A cos½ð!0 –!mÞt �

so we can retain a development purely in terms of
sinusoids, but with three harmonics, one at the cen-
tral frequency and two smaller ones (called ‘satellite
harmonics’) separated from it by 1 cycle in 18.61
years.

An accurate ephemeris would include the ellipti-
city of the orbits, and all the periodic variations in "
and other orbital parameters, leading to many har-

monics; for a detailed description, see Bartels (1957/

1985). The first full expansion, including satellite

harmonics, was by Doodson (1921), done algebrai-

cally from an analytical ephemeris; the result had 378

harmonics. Doodson needed a nomenclature for

these tides, and introduced one that relies on the

fact that, as our simple ephemeris suggests, the fre-

quency of any harmonic is the sum of multiples of a

few basic frequencies. For any (n, m), we can write the

argument of the exponent in [11] as

2�fkt þ �k ¼
X6

l¼1

Dlk2�fl

 !
t þ

X6

l¼1

Dlkjl

where the fl ’s are the frequencies corresponding to
various astronomical periods, and the jl ’s are the
phases of these at some suitable epoch; Table 3 gives
a list. (Recent tabulations extend this notation with up
to five more arguments to describe the motions of the
planets. As the tides from these are small we ignore
them here.) The l¼ 1 frequency is chosen to be one
cycle per lunar day exactly, so for the M2 tide the Dl ’s
are 2, 0, 0, 0, 0, 0. This makes the solar tide, S2, have the

Dl ’s 2, 2, 2, 0, 0, 0. In practice, all but the smallest tides
have Dlk ranging from �5 to 5 for l > 1. Doodson
therefore added 5 to these numbers to make a compact
code, so that M2 becomes 255?555 and S2 273?555.
This is called the Doodson number; the numbers with-
out 5 added are sometimes called Cartwright–Tayler
codes (Table 4).

Figure 3 shows the full spectrum of amplitude
coefficients, from the recent expansion of Hartmann

and Wenzel (1995). The top panel shows all harmonics

on a linear scale, making it clear that only a few are

large, and the separation into different species around

0, 1, and 2 cycles/day: these are referred to as the long-

period, diurnal, and semidiurnal tidal bands. The two

lower panels show an expanded view of the diurnal

and semidiurnal bands, using a log scale of amplitude

to include the smaller harmonics. What is apparent

from these is that each tidal species is split into a set of

bands, separated by 1 cycle/month; these are referred

to as ‘groups’: in each group the first two digits of the

Doodson number are the same. All harmonics with the

same first three digits of the Doodson number are in

clusters separated by 1 cycle/year; these clusters are

called ‘constituents’, though this name is also some-

times used for the individual harmonics. As a practical

matter this is usually the finest frequency resolution

attainable; on the scale of this plot finer frequency

separations, such as the nodal modulation, are visible

only as a thickening of some of the lines. All this fine-

scale structure poses a challenge to tidal analysis meth-

ods (Section 3.06.5.1).
Since Doodson provided the tidal potential to

more than adequate accuracy for studying ocean

tides, further developments did not take place for

the next 50 years, until Cartwright and Tayler

(1971) revisited the subject. Using eqn [6], they com-

puted the potential from a more modern lunar

ephemeris, and then applied special Fourier methods

to analyze, numerically, the resulting series, and get

amplitudes for the various harmonics. The result was

Table 3 Fundamental tidal frequencies

l Symbol Frequency (cycles/day) Period What

1 � 0.9661368 24 h 50 m 28.3 s Lunar day
2 s 0.0366011 27.3216 d Moon’s longitude: tropical month

3 h 0.0027379 365.2422 d Sun’s longitude: solar year

4 p 0.0003095 8.847 yr Lunar perigee

5 N9 0.0001471 18.613 yr Lunar node
6 ps 0.0000001 20941 yr Solar perigee

Longitude refers to celestial longitude, measured along the ecliptic.
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a compendium of 505 harmonics, which (with errors

corrected by Cartwright and Edden (1973)) soon

became the standard under the usual name of the

CTE representation. (A few small harmonics at the

edges of each band, included by Doodson but omitted

by Cartwright, are sometimes added to make a

CTED list with 524 harmonics.)
More extensive computations of the tidal poten-

tial and its harmonic decomposition have been driven

by the very high precision available from the ephe-

merides and the desire for more precision for
analyzing some tidal data (gravity tides from super-
conducting gravimeters). Particular expansions are
those of Bullesfeld (1985), Tamura (1987), Xi

(1987), Hartmann and Wenzel (1995), and
Roosbeek (1995) . The latest is that of Kudryavtsev
(2004) , with 27 000 harmonics. Figure 4 shows the
amplitude versus number of harmonics; to get very

Table 4 Largest tidal harmonics, for n¼ 2, sorted by size for each species

Amplitude (m) Doodson number Frequency (cpd) Darwin symbol

Long-period tides

�0.31459 055.555 0.0000000 M0, S0

�0.06661 075.555 0.0732022 Mf
�0.03518 065.455 0.0362916 Mm

�0.03099 057.555 0.0054758 Ssa

0.02793 055.565 0.0001471 N

�0.02762 075.565 0.0733493
�0.01275 085.455 0.1094938 Mtm

�0.00673 063.655 0.0314347 MSm

�0.00584 073.555 0.0677264 MSf

�0.00529 085.465 0.1096409
Diurnal tides

0.36864 165.555 1.0027379 K1

�0.26223 145.555 0.9295357 O1

�0.12199 163.555 0.9972621 P1

�0.05021 135.655 0.8932441 Q1

0.05003 165.565 1.0028850

�0.04947 145.545 0.9293886
0.02062 175.455 1.0390296 J1

0.02061 155.655 0.9664463 M1

0.01128 185.555 1.0759401 OO1

�0.00953 137.455 0.8981010 �1

�0.00947 135.645 0.8930970

�0.00801 127.555 0.8618093 
1

0.00741 155.455 0.9658274
�0.00730 165.545 1.0025908

0.00723 185.565 1.0760872

�0.00713 162.556 0.9945243 �1

�0.00664 125.755 0.8569524 2Q1

0.00525 167.555 1.0082137 �1

Semidiurnal tides

0.63221 255.555 1.9322736 M2

0.29411 273.555 2.0000000 S2

0.12105 245.655 1.8959820 N2

0.07991 275.555 2.0054758 K2

0.02382 275.565 2.0056229

�0.02359 255.545 1.9321265
0.02299 247.455 1.9008389 �2

0.01933 237.555 1.8645472 �2

�0.01787 265.455 1.9685653 L2

0.01719 272.556 1.9972622 T2

0.01602 235.755 1.8596903 2N2

0.00467 227.655 1.8282556 "2

�0.00466 263.655 1.9637084 
2
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high accuracy demands a very large number. But not
many are needed for a close approximation; the
CTED expansion is good to about 0.1% of the
total tide.

3.06.2.4 The Pole Tide

Both in our elementary discussion and in our math-
ematical development of the tidal forcing, we treated
the Earth’s rotation only as a source of motion of the
sub-body point. But changes in this rotation also
cause spatial variations in the gravitational potential,
and since these have the same effects as the attraction
of external bodies, they can also be regarded as tides.

The only significant one is the ‘pole tide’, which is

caused by changes in the direction of the Earth’s spin

axis relative to a point fixed in the Earth. The spin

produces a centrifugal force, which depends on the

angular distance between the spin axis and a location.

As the spin axis moves, this distance, and the centri-

fugal force, changes.
Mathematically, the potential at a location r from

a spin vector W is

V ¼ 1

2
jWj2jrj2 – jW ? rj2
� �

½12�

We assume that the rotation vector is nearly along the
3-axis, so that we have W ¼ � m1x̂1 þ m2x̂2 þ x̂3ð Þ,
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172 Earth Tides



with m1 and m2 both much less than 1. If we put this
expression into [12], and subtract V for m1 and m2 both
zero, the potential height for the pole tide is

V

g
¼ –

�2

2g
½2ðm1r1r3 þ m2r2r3Þ�

¼ –
�2a2

g
sin � cos �ðm1 cos�þ m2 sin�Þ

This is a degree-2 change in the potential, of the
same form as for the diurnal tides. However, the
periods involved are very different, since the largest
pole tides come from the largest polar motions, at
periods of 14 months (the Chandler wobble) and 1
year. The maximum range of potential height is a few
cm, small but not negligible; pole-tide signals have
been observed in sea-level data and in very precise
gravity measurements. This ‘tide’ is now usually
allowed for in displacement measurements, being
computed from the observed polar motions (Wahr,
1985). The accompanying ocean tide is marginally
observable (Haubrich and Munk, 1959; Miller and
Wunsch, 1973; Trupin and Wahr, 1990; Desai, 2002).

3.06.2.5 Radiational Tides

The harmonic treatment used for the gravitational
tides can also be useful for the various phenomena
associated with solar heating. The actual heating is
complicated, but a first approximation is to the input
radiation, which is roughly proportional to the cosine
of the Sun’s elevation during the day and zero at

night; Munk and Cartwright (1966) called this the
‘radiational tide’. The day–night asymmetry pro-
duces harmonics of degrees 1 and 2; these have
been tabulated by Cartwright and Tayler (1971)
and are shown in Figure 5 as crosses (for both
degrees), along with the tidal potential harmonics
shown as in Figure 3. The unit for the radiational
tides is S, the solar constant, which is 1366 W m�2.

These changes in solar irradiation drive changes
in ground temperature fairly directly, and changes in
air temperature and pressure in very complicated
ways. Ground-temperature changes cause thermoe-
lastic deformations with tidal periods (Berger, 1975;
Harrison and Herbst, 1977; Mueller, 1977). Air pres-
sure changes, usually known as ‘atmospheric tides’
(Chapman and Lindzen, 1970), load the Earth
enough to cause deformations and changes in gravity.
Such effects are usually treated as noise, but the
availability of better models of some of the atmo-
spheric tides (Ray, 2001; Ray and Ponte, 2003; Ray
and Poulose, 2005) and their inclusion in ocean-tide
models (Ray and Egbert, 2004) has allowed their
effects to be compared with gravity observations
(Boy et al., 2006b).

That some of these thermal tidal lines coincide
with lines in the tidal potential poses a real difficulty
for precise analysis of the latter. Strictly speaking, if
we have the sum of two harmonics with the same
frequency, it will be impossible to tell how much
each part contributes. The only way to resolve this
is to make additional assumptions about how the
response to these behaves at other frequencies. Even

Amplitude distribution of tidal harmonics

10–6

10–7

10–5

10–4

10–3

10–2

10–1

100

10–6

10–7

10–5

10–4

10–3

10–2

10–1

100

100 100101 101102 102103 103

Diurnal harmonics

Flatten

Harmonic number Harmonic number

A
m

p 
(m

, C
T

 n
or

m
al

iz
at

io
n)

Planet

Planet

LS, n = 2 LS, n = 2

CTE cutoff CTE cutoff

Semidiurnal harmonics

n = 3 n = 3

Figure 4 Distribution of harmonic amplitudes for the catalog of Hartmann and Wenzel (1995) , normalized according

to Cartwright and Tayler (1971). The line ‘LS, n¼ 2’ refers to lunisolar harmonics of degree 2; those with large dots have

Darwin symbols associated with them. Constituents of degree 3, from other planets, and from earth flattening are shown as
separate distributions. The horizontal line shows the approximate cutoff level of the Cartwright and Tayler (1971) list.

Earth Tides 173



when this is done, there is a strong likelihood that
estimates of these tides will have large systematic
errors – which is why, for example, the large K1

tide is less used in estimating tidal responses than
the smaller O1 tide is.

3.06.3 Tidal Response of the Solid
Earth

Having described the tidal forces, we next turn to the
response of the solid Earth – which, as is conventional,
we assume to be oceanless, putting in the effect of the
ocean tides at a later step. We start with the usual
approximation of a spherical Earth in order to intro-
duce a number of concepts, many of them adequate for
all but the most precise modeling of the tides. We then
describe what effects a better approximation has, in
enough detail to enable computation; the relevant

theory is beyond the scope of this treatment, though
outlined in Chapter 3.10.

3.06.3.1 Tidal Response of a SNREI Earth

To a good approximation, we can model the tidal
response of an oceanless Earth by assuming a SNREI
Earth model: that is, one that is Spherical, Non-
Rotating, Elastic, and Isotropic. As in normal-mode
seismology (from which this acronym comes), this
means that the only variation of elastic properties is
with depth. In addition to these restrictions on the
Earth model, we add one more about the tidal for-
cing: that it has a much longer period than any
normal modes of oscillation of the Earth so that we
can use a quasi-static theory, taking the response to
be an equilibrium one. Since the longest-period nor-
mal modes for such an Earth have periods of less than
an hour, this is a good approximation.

It is simple to describe the response of a SNREI
Earth to the tidal potential (Jeffreys, 1976). Because
of symmetry, only the degree n is relevant. If the
potential height at a point on the surface is V(�, �)/
g, the distortion of the Earth from tidal forces pro-
duces an additional gravitational potential knV (�, �),
a vertical (i.e., radial) displacement hnV(�, �)/g, and a
horizontal displacement ln(r1V(�, �)/g), where r1 is
the horizontal gradient operator on the sphere. So
defined, kn hn, and ln are dimensionless; they are
called Love numbers, after A. E. H. Love (though
the parameter ln was actually introduced by
T. Shida). For a standard modern earth model
(PREM) h2¼ 0.6032, k2¼ 0.2980, and l2¼ 0.0839.
For comparison, the values for the much older
Gutenberg–Bullen Earth model are 0.6114, 0.3040,
and 0.0832 – not very different. In this section we
adopt values for a and g that correspond to a spherical
Earth: 6.3707� 106 m and 9.821 m s�2, respectively.

3.06.3.1.1 Some combinations of Love

numbers (I): gravity and tilt

Until there were data from space geodesy, neither the
potential nor the displacements could be measured;
what could be measured were ocean tides, tilt, changes
in gravity, and local deformation (strain), each of
which possessed its own expression in terms of Love
numbers – which we now derive. Since the first three
of these would exist even on a rigid Earth, it is com-
mon to describe them using the ratio between what
they are on an elastic Earth (or on the real Earth) and
what they would be on a rigid Earth.
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The simplest case is that of the effective tide-raising
potential: that is, the one relevant to the ocean tide.
The total tide-raising potential height is (1þ kn)V/g,
but the solid Earth (on which a tide gauge sits) goes
up by hnV/g, so the effective tide-raising potential is
(1þ kn� hn)V/g, sometimes written as �nV/g, �n being
called the ‘diminishing factor’. For the PREM model
�2¼ 0.6948. Since tilt is just the change in slope of an
equipotential surface, again relative to the deforming
solid Earth, it scales in the same way that the potential
does: the tilt on a SNREI Earth is �n times the tilt on a
rigid Earth. The NS tilt is, using eqn [8] and expres-
sions for the derivatives of Legendre functions,


N ¼
– �n

ga

qV

q�

¼ – 1

a sin �

Xn¼1
n¼2

�n

Xn

m¼0

N m
n ½n cos �Pm

n ðcos �Þ – ðnþ mÞ

� Pm
n – 1ðcos �Þ�½am

n ðtÞcos m�þ bm
n ðtÞsin m�� ½13�

where the sign is chosen such that a positive tilt to the
North would cause a plumb line to move in that
direction. The East tilt is


E ¼
�n

ga sin �

qV

q�
¼ –1

a sin �

Xn¼1
n¼2

�n

Xn

m¼0

mN m
n Pm

n ðcos �Þ

� ½bm
n ðtÞcos m� – am

n ðtÞsin m��
½14�

with the different combinations of a and b with the �
dependence showing that this tilt is phase-shifted
relative to the potential, by 90� if we use a harmonic
decomposition.

Tidal variations in gravity were for a long time the
commonest type of Earth-tide data. For a spherical
Earth, the tidal potential is, for degree n,

Vn

r

a

� �n

þ knVn

a

r

� �nþ1

where the first term is the potential caused by the
tidal forcing (and for which we have absorbed all
nonradial dependence into Vn), and the second is
the additional potential induced by the Earth’s defor-
mation. The corresponding change in local
gravitational acceleration is the radial derivative of
the potential:

q
qr

Vn

r

a

� �n

þkn

a

r

� �nþ1
� �� �

r¼a

¼ Vn

n

a
– ðnþ 1Þ kn

a

� �
½15�

In addition to this change in gravity from the
change in the potential, there is a change from the
gravimeter being moved up by an amount hnVn/g.
The change in gravity is this displacement times

the gradient of g, 2g/a, plus the displacement times
�!2, where ! is the radian frequency of the tidal
motion – that is, the inertial acceleration. (We adopt
the Earth-tide convention that a decrease in g is
positive.) If we ignore this last part (which is at
most 1.5% of the gravity-gradient part), we get a
total change of

Vn

n

a
–

nþ 1

a

� �
kn þ

2hn

a

� �
¼ nVn

a
1 –

nþ 1

n

� �
kn þ

2

n
hn

� �

½16�

The nVn/a term is the change in g that would be
observed on a rigid Earth (with h and k zero); the
term which this is multiplied by, namely

�n ¼ 1þ 2hn

n
–

nþ 1

n

� �
kn

is called the ‘gravimetric factor’. For the PREM
model, �2¼ 1.1562: the gravity tides are only about
16% larger than they would be on a completely rigid
Earth, so that most of the tidal gravity signal shows
only that the Moon and Sun exist, but does not
provide any information about the Earth. The
expression for the gravity tide is of course very
similar to eqn [8]:

�g ¼ g

a

Xn¼1
n¼2

�n

Xn

m¼0

N m
n Pm

n ðcos �Þ½am
n ðtÞcos m�

þ bm
n ðtÞsin m�� ½17�

3.06.3.1.2 Combinations of Love numbers
(II): displacement and strain tides

For a tidal potential of degree n, the displacements at
the surface of the Earth (r¼ a) will be, by the defini-
tions of the Love numbers ln and hn,

ur ¼
hnV

g
; u� ¼

ln

g

qV

q�
; u� ¼

ln

g sin �

qV

q�
½18�

in spherical coordinates. Comparing these with [17],
[13], and [14], we see that the vertical displacement is
exactly proportional to changes in gravity, with
the scaling constant being hna/2�ng¼ 1.692� 105 s2;
and that the horizontal displacements are exactly
proportional to tilts, with the scaling constant being
lna/�n¼ 7.692� 105 m; we can thus use eqns [17],
[13], and [14], suitably scaled, to find tidal
displacements.

Taking the derivatives of [18], we find the tensor
components of the surface strain are
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e�� ¼
1

ga
hnV þ ln

q2V

q2�

� �

e�� ¼
1

ga
hnV þ lncot �

qV

q�
þ ln

sin �

q2V

q2�

� �

e�� ¼
ln

ga sin �

q2V

q�q�
– cot �

qV

q�

� �

We again use [8] for the tidal potential, and get
the following expressions that give the formulas for
the three components of surface strain for a particular
n and m; to compute the total strain these should be
summed over all n 	 2 and all m from 0 to n (though
in practice the strain tides with n > 3 or m¼ 0 are
unobservable).

e�� ¼
N m

n

a sin2�
½ hn sin2 �þ ln n2cos2� – n

	 
	 

Pm

n ðcos �Þ

– 2lnðn – 1Þðnþ mÞcos �Pm
n – 1ðcos �Þ

þ lnðnþ mÞðnþ m – 1ÞPm
n – 2ðcos �Þ�

� ½am
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e�� ¼
N m

n
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Pm
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– lnðnþ mÞcos �Pm
n – 1ðcos �Þ

�

�
�

am
n ðtÞcos m�þ bm

n ðtÞsin m�
�

e�� ¼
mN m

n ln

a sin2�
n – 1ð Þcos �Pm

n ðcos �Þ – ðnþ mÞPm
n – 1ðcos �Þ

� �

� bm
n ðtÞcosm� – am

n ðtÞsin m�
� �

Note that the combination of the longitude factors
with the am

n ðtÞ and bm
n ðtÞ means that e�� and e�� are in

phase with the potential, while e�� is not.
One consequence of these expressions is that,

for n¼ 2 and m equal to either 1 or 2, the areal strain,
ð1=2Þðe�� þ e��Þ; is equal to V(h2� 3l2)/ga : areal

strain, vertical displacement, the potential, and gravity
are all scaled versions of each other. Close to
the surface, the free-surface condition means that
deformation is nearly that of plane stress, so vertical
and volume strains are also proportional to areal strain,
and likewise just a scaled version of the potential.

If we combine these expressions for spatial varia-
tion with the known amplitudes of the tidal forces, we
can see how the rms amplitude of the body tides
varies with latitude and direction (Figure 6). There
are some complications in the latitude dependence;
for example, the EW semidiurnal strain tides go to

zero at 52.4� latitude. Note that while the tilt tides are
larger than strain tides, most of this signal is from the
direct attractions of the Sun and Moon; the purely
deformational part of the tilt is about the same size as
the strain.

3.06.3.2 Response of a Rotating Earth

We now turn to models for tides on an oceanless and
isotropic Earth, still with properties that depend on
depth only, but add rotation and slightly inelastic
behavior. Such models have three consequences for
the tides:

1. The ellipticity of the CMB and the rotation of the
Earth combine to produce a free oscillation in
which the fluid core (restrained by pressure
forces) and solid mantle precess around each
other. This is known as the ‘nearly diurnal free
wobble’ (NDFW) or ‘free core nutation’. Its fre-
quency falls within the band of the diurnal tides,
which causes a resonant response in the Love
numbers near 1 cycle/day. The diurnal tides also
cause changes in the direction of the Earth’s spin
axis (the astronomical precessions and nutations),
and the NDFW affects these as well, so that some
of the best data on it come from astronomy
(Herring et al., 2002).

2. Ellipticity and rotation couple the response to
forcing of degree n to spherical harmonics of
other degrees, and spheroidal to toroidal modes
of deformation. As a result, the Love numbers
become slightly latitude dependent, and addi-
tional terms appear for horizontal displacement.

3. The imperfect elasticity of the mantle (finite Q)
modifies the Love numbers in two ways: they
become complex, with small imaginary parts; and
they become weakly frequency dependent
because of anelastic dispersion.

The full theory for these effects, especially the first
two, is quite complicated. Love (1911) provided some
theory for the effects of ellipticity and rotation, and
Jeffreys and Vincente (1957) and Molodenskii (1961)
for the NDFW, but the modern approach for these
theories was described by Wahr (1981a, 1981b); a
simplified version is given by Neuberg et al. (1987)
and Zürn (1997). For more recent developments, see
the article by Dehant and Mathews in this volume,
and Mathews et al. (1995a, 1995b, 1997, 2002), Wang
(1997), Dehant et al. (1999), and Mathews and Guo
(2005).

176 Earth Tides



To obtain the full accuracy of these theories, parti-
cularly for the NDFW correction, requires the use of
tabulated values of the Love numbers for specific
harmonics, but analytical approximations are also
available. The next three sections outline these,
using values from the IERS standards (McCarthy
and Pétit, 2004) for the Love numbers and from
Dehant et al. (1999) for the gravimetric factor.

3.06.3.2.1 NDFW resonance

The most important result to come out of the com-
bination of improved theoretical development and
observations has been that the period of the
NDFW, both in the Earth tides and in the nutation,
is significantly different from that originally pre-
dicted. The NDFW period is in part controlled by
the ellipticity of the CMB, which was initially
assumed to be that for a hydrostatic Earth. The

observed period difference implies that the ellipticity
of the CMB departs from a hydrostatic value by
about 5%, the equivalent of a 500 m difference in
radius, an amount not detectable using seismic data.
This departure is generally thought to reflect distor-
tion of the CMB by mantle convection.

The resonant behavior of the Love numbers from
the NDFW is confined to the diurnal band; within
that band it can be approximated by an expansion in
terms of the resonant frequencies:

Lð f Þ ¼ Sz þ
X2

k¼1

Sk

f – fk

½19�

where L( f ) is the frequency-dependent Love num-
ber (of whatever type) for frequency f in cycles per
solar day; The expansion in use for the IERS stan-
dards includes three resonances: the Chandler
wobble, the NDFW, and the free inner core nutation
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(FICN); to a good approximation (better than 1%),
the last can be ignored. Table 5 gives the values of
the S ’s according to the IERS standards (and to
Dehant et al. (1999) for the gravimetric factors),
scaled for f in cycles per solar day; in these units the
resonance frequencies are

f1 ¼ – 2:60812� 10 – 3 – 1:365� 10 – 4i

f2 ¼ 1:0050624þ 2:5� 10 – 5i

and the FICN frequency (not used in [19]) is
1.00176124þ 7.82� 10�4i. Dehant et al. (1999) use
purely real-valued frequencies, with f1¼�2.492 �
10�3 and f2¼ 1.0050623, as well as purely real values
of the S ’s.

Figure 7 shows the NDFW resonance, for a signal
(areal strain) relatively sensitive to it. Unfortunately,

the tidal harmonics do not sample the resonance very

well; the largest effect is for the small  1 harmonic,

which is also affected by radiational tides. While tidal

measurements (Zürn, 1997) have confirmed the fre-

quency shift seen in the nutation data, the latter at

this time seem to give more precise estimates of the

resonant behavior.
One consequence of the NDFW resonance is that

we cannot use equations of the form [17] to compute

the theoretical diurnal tides, since the factor for

them varies with frequency. If we construct the am
n ðtÞ

and bm
n ðtÞ using [11], it is easy to adjust the harmonic

amplitudes and phases appropriately. Alternatively, if

we find am
n ðtÞ and bm

n ðtÞ using an ephemeris, we can

compute the diurnal tides assuming a frequency-

independent factor, and then apply corrections for
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Table 5 Coefficients (real and imaginary parts) used in eqn [19] to find the frequency dependence of the Love numbers

(including corrections for ellipticity) in the diurnal tidal band

R(Sz) I(Sz) R(S1) I(S1) R(S2) I(S2)

�0 1.15802 0.0 �2.871�10�3 0.0 4.732� 10�5 0.0

k (0) 0.29954 �1.412�10�3 �7.811�10�4 �3.721�10�5 9.121� 10�5 �2.971�10�6

h (0) 0.60671 �2.420�10�3 �1.582�10�3 �7.651�10�5 1.810� 10�4 �6.309�10�6

l (0) 0.08496 �7.395�10�4 �2.217�10�4 �9.672�10�6 �5.486� 10�6 �2.998�10�7

�þ 1.270�10�4 0.0 �2.364�10�5 0.0 1.564� 10�6 0.0

kþ �8.040�10�4 2.370�10�6 2.090�10�6 1.030�10–7 �1.820� 10�7 6.500�10�9

h(2) �6.150�10�4 �1.220�10�5 1.604�10�6 1.163�10�7 2.016� 10�7 2.798�10�9

l (2) 1.933 � 10�4 �3.819�10�6 �5.047�10�7 �1.643�10�8 �6.664� 10�9 5.090�10�10

l (1) 1.210�10�3 1.360�10�7 �3.169�10�6 �1.665�10�7 2.727� 10�7 �8.603�10�9

l P �2.210�10�4 –4.740�10�8 5.776�10�7 3.038�10�8 1.284� 10�7 �3.790�10�9
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the few harmonics that are both large and affected by
the resonance; Mathews et al. (1997) and McCarthy and
Pétit (2004) describe such a procedure for displace-
ments and for the induced potential.

3.06.3.2.2 Coupling to other modes

The other effect of rotation and ellipticity is to cou-
ple the spheroidal deformation of degree n, driven by
the potential, to spheroidal deformations of degree
n � 2 and toroidal deformations of degree n � 1.
Thus, the response to the degree-2 part of the tidal
potential contains a small component of degrees 0
and 4. If we generalize the Love numbers, describing
the response as a ratio between the response and the
potential, the result will be a ratio that depends on
latitude: we say that the Love number has become
latitude dependent.

Such a generalization raises issues of normaliza-
tion; unlike the spherical case, the potential and the
response may be evaluated on different surfaces. This
has been a source of some confusion. The normal-
ization of Mathews et al. (1995b) is the one generally
used for displacements: it uses the response in dis-
placement on the surface of the ellipsoid, but takes
these to be relative to the potential evaluated on a
sphere with the Earth’s equatorial radius. Because of
the inclusion of such effects as the inertial and
Coriolis forces, the gravimetric factor is no longer
the combination of potential and displacement Love
numbers, but an independent ratio, defined as the
ratio of changes in gravity on the ellipsoid, to the
direct attraction at the same point. Both quantities are
evaluated along the normal to the ellipsoid, as a good
approximation to the local vertical. Wahr (1981a)
used the radius vector instead, producing a much
larger apparent latitude effect.

The standard expression for the gravimetric factor
is given by Dehant et al. (1999):

�ð�Þ ¼ �0 þ �þ
Y m

nþ2

Y m
n

þ � –
Y m

n – 2

Y m
n

½20�

By the definition of the Y m
n ’s, ��¼ 0 except for m 


n� 2, so for the n¼ 2 tides we have for the diurnal
tides

�ð�Þ ¼ �0 þ �þ
ffiffiffi
3
p

2
ffiffiffi
2
p 7 cos2 � – 3
	 


and for the semidiurnal tides

�ð�Þ ¼ �0 þ �þ
ffiffiffi
3
p

2
7 cos2 � – 1
	 


The expression for the induced potential (Wahr,
1981a) is similar, namely that the potential is gotten
by replacing the term Ynmð�; �Þ in eqn [7] with

k0
ae

r

� �nþ1

Ynm �; �ð Þ þ kþ
ae

r

� �nþ3

Y m
nþ2 �; �ð Þ ½21�

which of course recovers the conventional Love
number for kþ¼ 0.

The expressions for displacements are more com-
plicated, partly because this is a vector quantity, but
also because the horizontal displacements include
spheroidal–toroidal coupling, which affects neither
the vertical, the potential, nor gravity. For the
degree-2 tides, the effect of coupling to the degree-
4 deformation is allowed for by defining

h �ð Þ ¼ hð0Þ þ 1

2
hð2Þ 3 cos2 � – 1
	 


;

l �ð Þ ¼ l ð0Þ þ 1

2
l ð2Þ 3 cos2 � – 1
	 
 ½22�

Then to get the vertical displacement, replace the
term Ynm(�, �) in eqn [7] with

hð�ÞY m
2 ð�; �Þ þ

�m0hP

N 0
2

½23�

where the �m0 is the Kronecker delta, since hP

(usually called h9 in the literature) only applies for
m¼ 0; the N 0

2 factor arises from the way in which
hP was defined by Mathews et al. (1995b) .

The displacement in the �̂ (North) direction is
gotten by replacing the term Ynm(�, �) in eqn [7] with

lð�Þ qY m
2 ð�; �Þ
q�

–
ml1cos �

sin �
Y m

2 ð�; �Þ þ
�m1lP

N 1
2

ei� ½24�

where again the lP (usually called l9) applies only for
the particular value of m¼ 1, for which it applies a
correction such that there is no net rotation of the
Earth. Finally, to get the displacement in the �̂ (East)
direction, we replace the Ynm (�, �) term in [7] with

i
mlð�Þ
sin �

Y m
2 ð�; �Þ þ l1cos �

qY m
2 ð�; �Þ
q�

þ �m0sin �l P

N 0
2

� �
½25�

where again the l P term applies, for m¼ 0, a no-net-
rotation correction. The multiplication by i means
that when this is applied to [7] and the real part
taken, the time dependence will be bm

n ðtÞ cos m� – am
n

ðtÞsin m� instead of am
n ðtÞcos m�þ bm

n ðtÞsin m�.

Table 6 gives the generalized Love numbers for
selected tides, including ellipticity, rotation, the
NDFW, and anelasticity (which we discuss below).
The values for the diurnal tides are from exact com-
putations rather than the resonance approximations
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given above. It is evident that the latitude depen-
dence ranges from small to extremely small, the latter
applying to the gravimetric factor, which varies by
only 4� 10�4 from the equator to 60�N. For the
displacements, Mathews et al. (1997) show that the
various coupling effects are at most 1 mm; the lati-
tude dependence of h(�) changes the predicted
displacements by 0.4 mm out of 300.

3.06.3.2.3 Anelastic effects

All modifications to the Love numbers discussed so
far apply to an Earth model that is perfectly elastic.
However, the materials of the real Earth are slightly
dissipative (anelastic), with a finite Q. Measurements
of the Q of Earth tides were long of interest because
of their possible relevance to the problem of tidal
evolution of the Earth–Moon system (Cartwright,
1999); though it is now clear that almost all of the
dissipation of tidal energy occurs in the oceans (Ray
et al., 2001), anelastic effects on tides remain of inter-
est because tidal data (along with the Chandler
wobble) provide the only information on Q at fre-
quencies below about 10�3 Hz.

Over the seismic band (approximately 10�3 to
1 Hz), Q appears to be approximately independent
of frequency. A general model for frequency depen-
dence is

Q ¼ Q0
f

f0

� ��
½26�

where f0 and Q0 are reference values. In general, in a
dissipative material the elastic modulus � will in

general also be a function of frequency, with �( f )
and Q( f ) connected by the Kramers–Kronig relation
(Dahlen and Tromp, 1998, chapter 6). (We use �
because this usually denotes the shear modulus; in
pure compression Q is very high and the Earth can be
treated as elastic.) This frequency dependence is
usually termed ‘anelastic dispersion’. For the fre-
quency dependence of Q given by [26], and � small,
the modulus varies as

�ð f Þ ¼ �0 1þ 1

Q0

2

��
1 –

f0

f

� ��� �
þ i

f0

f

� ��
 �� �
½27�

so there is a slight variation in the modulus with
frequency, and the modulus becomes complex, intro-
ducing a phase lag into its response to sinusoidal
forcing. In the limit as � approaches zero (constant
Q), the real part has a logarithmic frequency depen-
dence. Including a power-law variation [26] at
frequencies below a constant-Q seismic band, the
frequency dependence becomes

�ð f Þ ¼�0 1þ 1

Q0

2

�
ln

f0

f

� ��
þ i


 �� �
; f > fm

�ðf Þ ¼�0

�
1þ 1

Q0



2

��

�
� ln

fm

f0

� �

þ 1 –
fm

f

� ���
þ i

fm

f

� ����
; f < fm

½28�

where fm is the frequency of transition between the
two Q models.

Table 6 Love numbers for an Earth that includes ellipticity, rotation, anelasticity, and the NDFW resonance

Ssa Mf O1 P1 K1  1 M2 M3

�0 1.15884 1.15767 1.15424 1.14915 1.13489 1.26977 1.16172 1.07338

�þ 0.00013 0.00013 0.00008 �0.00010 �0.00057 0.00388 0.00010 0.00006

�� �0.00119 �0.00118
R [k (0)] 0.3059 0.3017 0.2975 0.2869 0.2575 0.5262 0.3010 0.093

I [k (0)] �0.0032 �0.0021 �0.0014 �0.0007 0.0012 0.0021 �0.0013

kþ �0.0009 �0.0009 �0.0008 �0.0008 �0.0007 �0.0011 �0.0006

R [h (0)] 0.6182 0.6109 0.6028 0.5817 0.5236 1.0569 0.6078 0.2920
I [h (0)] �0.0054 �0.0037 �0.0006 �0.0006 �0.0006 �0.0020 �0.0022

R [l (0)] 0.0886 0.0864 0.0846 0.0853 0.0870 0.0710 0.0847 0.0015

I [l (0)] �0.0016 �0.0011 �0.0006 �0.0006 �0.0007 �0.0001 �0.0006

h(2) �0.0006 �0.0006 �0.0006 �0.0006 �0.0007 �0.0001 �0.0006
l (2) 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

l (1) 0.0012 0.0012 0.0011 0.0019 0.0024

l P –0.0002 –0.0002 –0.0003 –0.0001

Values for the gravimetric factors are from Dehant et al. (1999) and for the other Love numbers from the IERS standards (McCarthy and
Pétit, 2004).
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Adding anelasticity to an Earth model has three
effects on the computed Love numbers:

1. Anelastic dispersion means that the elastic
constants of an Earth model found from seismol-
ogy must be adjusted slightly to be appropriate
for tidal frequencies. As an example, Dehant et al.
(1999) find that for an elastic Earth model
the gravimetric factor �0 is 1.16030 for the M2

tide; an anelastic model gives 1.16172; for h(0) the
corresponding values are 0.60175 and 0.61042.

2. Dispersion also means that the Love numbers vary
within the tidal bands. For the semidiurnal and
diurnal tides, the effect is small, especially com-
pared to the NDFW resonance; in the long-period
bands, it is significant as f approaches zero. The
usual formulation for this (McCarthy and Pétit,
2004) is based on a slightly different form of [28],
from Smith and Dahlen (1981) and Wahr and
Bergen (1986) ; the Love numbers vary in the
long-period band as

Lð f Þ ¼ A – B cot
��

2
1 –

fm

f

� ��� �
þ i

fm

f

� ��
 �
½29�

where A and B are constants for each Love number.
For the IERS standards, �¼ 0.15 and fm¼ 432 cpd (a
period of 200 s). A and B are 0.29525 and
�5.796� 10�4 for k0, 0.5998 and �9.96� 10�4 for
h(0), and 0.0831 and �3.01� 10�4 for l (0).
3. As eqn [29] shows, the Love numbers also

become complex-valued, introducing small phase
lags into the tides. There are additional causes
for this; in particular, the NDFW frequency can
have a small imaginary part because of dissipative
core–mantle coupling, and this will produce com-
plex-valued Love numbers even in an elastic
Earth. Complex-valued Love numbers can be
used in extensions of eqns [7] and [8]; for example
if the elastic Love-number combination intro-
duces no phase shift (as for gravity) itself in
phase, the real part is multiplied by ½am

n ðtÞcos m�
þ bm

n ðtÞsin m�� and the imaginary part by

½bm
n ðtÞcos m� – am

n ðtÞsin m��.

The most recent examination of tidal data for ane-
lastic effects (Benjamin et al., 2006) combined data
from diurnal tides (in the potential, as measured by
satellites), the Chandler wobble, and the 19-year
nodal tide. They find a good fit for � between 0.2
and 0.3, with fm¼ 26.7 cpd; using the IERS value of fm
gave a better fit for � between 0.15 and 0.25.

3.06.4 Tidal Loading

A major barrier to using Earth tides to find out about
the solid Earth is that they contain signals caused by
the ocean tides – which may be signal or noise
depending on what is being studied. The redistribu-
tion of mass in the ocean tides would cause signals
even on a rigid Earth, from the attraction of the water;
on the real Earth they also cause the Earth to distort,
which causes additional changes. These induced sig-
nals are called the ‘load tides’, which combine with the
body tide to make up the total tide (Figure 1).

3.06.4.1 Computing Loads I: Spherical
Harmonic Sums

To compute the load, we start with a description of
the ocean tides, almost always as a complex-valued
function H(�9, �9), giving the amplitude and phase of
a particular constituent over the ocean; we discuss
such ocean-tide models in more detail in Section
3.06.4.3. The loads can then be computed in two
ways: using a sum of spherical harmonics, or as a
convolution of the tide height with a Green function.

In the first approach, we expand the tidal eleva-
tion in spherical harmonics:

Hð�9; �9Þ ¼
X1
n¼0

Xn

m¼ – n

HnmYnmð�9; �9Þ ½30�

where the Ynm are as in the section on tidal forcing,
and the Hnm would be found from

Hnm ¼
Z �

0

sin �9d�9

Z 2�

0

d�Hð�9; �9ÞY �nm

X

Z
�

Hð�9; �9ÞY �nm d� ½31�

where we use � for the surface of the sphere. Note
that there will be significant high-order spherical-har-
monic terms in Hnm, if only because the tidal height
goes to zero over land: any function with a step beha-
vior will decay only gradually with increasing degree.

The mass distribution H causes a gravitational
potential on the surface of the Earth, which we call
V L. This potential is given by the integral over the
surface of the potential function times H; the poten-
tial function is proportional to r�1, where r is the
linear distance from the location (�, �) to the mass at
(�9, �9), making the integral

V Lð�; �Þ ¼ G�wa2

Z
�

Hð�9; �9Þ
r

d� ½32�
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where �w is the density of seawater, and G and a are
as in Section 3.06.2.1. We can write the r�1 in terms of
angular distance �:

1

r
¼ 1

2a sinð�=2Þ ¼
1

a

X1
n¼0

Pnðcos �Þ

¼ 1

a

X1
n¼0

Xn

m¼ – n

4�

2nþ 1
Ynmð�9; �9ÞY �nmð�; �Þ ½33�

where we have again used the addition theorem [5].
Combining the last expression in [33] with the sphe-
rical harmonic expansion [30] and the expression for
the potential [32] gives the potential in terms of
spherical harmonics:

V L ¼ G�wa
X1
n¼0

Xn

m¼ – n

4�

2nþ 1
HnmYnmð�; �Þ ½34�

We have found the potential produced by the load
because this potential is used, like the tidal potential,
in the specification of the Earth’s response to the
load. Specifically, we define the load Love numbers
k9n; h9n; and l9n such that, for a potential V L of degree
n, we have

uz
n ¼ h9n

V L
n

g
; uh

n ¼ l9n
r1V L

n

g
; Vn ¼ k9nV L

n ½35�

where uz
n is the vertical displacement (also of degree

n), uh
n is the horizontal displacement, and Vn is the

additional potential produced by the deformation of
the Earth. These load Love numbers, like the Love
numbers for the tidal potential, are found by inte-
grating the differential equations for the deformation
of the Earth, but with a different boundary condition
at the surface: a normal stress from the load, rather
than zero stress. For a spherical Earth, these load
numbers depend only on the degree n of the spherical
harmonic.

To compute the loads, we combine the definition
of the load Love numbers [35] with the expression
[34], using whichever combination is appropriate for
some observable. For example, for vertical displace-
ment uz this procedure gives

uzð�; �Þ ¼ G�wa

g

X1
n¼0

Xn

m¼ – n

4�

2nþ 1
h9nHnmYnmð�; �Þ

¼ �w

�E

X1
n¼0

Xn

m¼ – n

3h9n

2nþ 1
HnmYnmð�; �Þ ½36�

where �E is the mean density of the Earth. A similar
expression applies for the induced potential, with k9n
replacing h9n; for the effective tide-raising potential,

sometimes called the ‘self-attraction loading’ or SAL
(Ray, 1998), we would use 1þ k9n� h9n.

Many terms are needed for a sum in [36] to con-
verge, but such a sum provides the response over
the whole Earth. Ray and Sanchez (1989) used this
method to compute radial displacement over the
whole Earth, with n¼ 256, and special methods
to speed the computation of the Hnm coefficients in
eqn [31]. In any method that sums harmonics, there is
always room for concern about the effects of Gibbs’
phenomenon (Hewitt and Hewitt, 1979) near discon-
tinuities, but no such effect was observed in the
displacements computed near coastlines. Mitrovica
et al. (1994) independently developed the same
method, extended it to the more complicated case
of horizontal displacements, and were able to make
calculations with n¼ 2048.

Given a global ocean-tide model and a need to
find loads over the entire surface, this
summation technique requires much less computa-
tion than the convolution methods to be discussed in
the next section. For gravity the contributions from
the Earth’s response are, from eqn [16],

– ðnþ 1Þk9nV L
n =a from the induced potential and

2h9nV L
n =a from the displacement, making the sum

�gð�; �Þ ¼ 3g�w

a�E

X1
n¼0

Xn

m¼ – n

2h9n – ðnþ 1Þk9n

2nþ 1
HnmYnmð�; �Þ

½37�

While this sum might appear to converge more
slowly than eqn [36] because of the nþ 1 multiplying
k9n, the convergence is similar because for large n, nk9n
approaches a constant value, which we term k91. All
three load Love numbers have such asymptotic limits
for large n:

As n)1 h9n ) h91 nk9n ) k91 nl9n ) l91 ½38�

so that the sum [37] converges reasonably well. A
similar sum can be used to get the gravity from the
direct attraction of the water:

3g�w

a�E

X1
n¼0

Xn

m¼ – n

1

4nþ 2
HnmYnmð�; �Þ

(Merriam, 1980; Agnew, 1983).
However, summation over harmonics is not well

suited to quantities that involve spatial derivatives,
such as tilt or strain. To find the load tides for these,
we need instead to employ convolution methods,
which we now turn to.
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3.06.4.2 Computing Loads II: Integration
Using Green Functions

If we only want the loads at a few places, the most

efficient approach is to multiply the tide model by a

Green function which gives the response to a point load,

and integrate over the area that is loaded by the tides.

That is, we work in the spatial domain rather than, as in

the previous section, in the wave number domain; there

is a strict analogy with Fourier theory, in which con-

volution of two functions is the same as multiplying

their Fourier transforms. Convolution methods have

other advantages, such as the ability to combine different

ocean-tide models easily, include more detail close to

the point of observation, and handle any of the Earth-

tide observables. The standard reference on the

procedure remains the classic paper of Farrell (1972);

Jentzsch (1997) is a more recent summary.
More formally, we find the integral over the

sphere (in practice over the oceans)

Z �

0

r sin �9d�9

Z 2�

0

r d�9GLð�; �; �9; �9Þ�wHð�9; �9Þ

½39�

where GL is the Green function for an effect (of
whatever type) at (�, �) from a point mass (�-func-
tion) at (�9, �9); �wgHr2sin � d� d� is the applied force.

The Green functions are found, not directly, but by
forming sums of combinations of the load Love num-

bers. The first step is to find the potential from a point

mass. Take H¼ �wa2�(�9, �9), (where � is the Dirac

delta-function). Substitute this into eqn [32], using the

sum in Pn(cos �) in eqn [33]. This gives the potential as

V Lð�; �Þ ¼ G�wa

Z
�

Hð�9; �9Þ
X1
n¼0

Pnðcos �Þd�

¼ ga

ME

X1
n¼0

Pnðcos �Þ ½40�

which shows that the degree-n part of the potential is

V L
n ¼ ga=ME , independent of n. So, to compute ver-

tical displacement we would apply this potential to
the load Love number h9n, getting the displacement

uz¼ a

ME

X1
n¼0

h9n
V L

n

g
¼ a

ME

X1
n¼0

h9nPnðcos�Þ¼ Gzð�Þ ½41�

which is thus the loading Green function for vertical
displacement. Some insight into the behavior of this
function can be gotten by using the asymptotic value
of h9n to write

Gzð�Þ ¼
a

ME

X1
n¼0

h91Pnðcos �Þ

þ a

ME

X1
n¼0

ðh9n – h91ÞPnðcos �Þ

¼ ah91
2ME sin �=2

þ a

ME

X1
n¼0

ðh9n – h91ÞPnðcos �Þ

½42�

where we have made use of [33]. The new sum will
converge much more rapidly; in practice, it needs to
include only enough terms for h9n to have approached
h91 to adequate precision. For � small, the sum
approaches zero, so the analytic part shows that, for
loads nearby, Gz varies as ��1. This is the vertical
displacement seen for a point load on an elastic half-
space, in what is called the Boussinesq solution; in the
limit of short distance, the loading problem reduces
to this, which provides a useful ckeck on numerical
computations.

For the horizontal displacement the Green func-
tion is

uh ¼ ga

ME

X1
n¼0

l9n

g

qV L
n

q�
¼ a

ME

X1
n¼0

l9n
qPnðcos �Þ

q�
¼ Ghð�Þ

½43�

which may again have the asymptotic part nl9n
removed and replaced by an analytic expression

Ghð�Þ ¼
al91
ME

X1
n¼0

1

n

qPnðcos �Þ
q�

þ a

ME

X1
n¼0

l9n – l91ð Þ qPn cos �ð Þ
q�

¼ –
al91
ME

cos �=2ð Þ½1þ 2 sin �=2�
2sin �=2ð Þ½1þ sin �=2�

þ a

ME

X1
n¼0

nl9n – l91ð Þ 1

n

qPn cos �ð Þ
q�

½44�

which shows the same dependence on � for small
distances.

For gravity, there are two parts to the loading: the
direct attraction of the water mass (often called the

Newtonian part), and the change caused by elastic

deformation of the Earth. The first part can be found

analytically by using the inverse square law and

computing the vertical part of the attraction. If the

elevation of our point of observation is "a, with "
small, this Green function is

Ggn �ð Þ ¼ –
g

ME

"þ 2sin2 �=2

ð4 1þ "ð Þsin2 �=2þ "2Þ3=2

" #
½45�
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The elastic part of the Green function follows from
the harmonic expression [37]:

Gge ¼
g

ME

X1
n¼0

ð2h9n – nþ 1ð Þk9nÞPn cos �ð Þ

¼ gð2h91 – k91Þ
2MEsin �=2

þ a

ME

X1
n¼0

ð2ðh9n – h91Þ

– ððnþ 1Þk9n – k91ÞÞPnðcos �Þ

½46�

which shows, again, a ��1 singularity for � small.
Likewise, the Green function for the tide-raising

potential makes use of the combination 1 – k9n þ h9n:

Gpot ¼
a

ME

X1
n¼0

ð1þ k9n – h9nÞPnðcos �Þ

¼ að1 – h91Þ
2MEsin�=2

þ
X1
n¼0

ðk9n – ðh9n – h91ÞÞPnðcos �Þ ½47�

and the Green function for tilt uses the same combi-
nation of Love numbers, but with the derivative of
the Pn’s:

Gt ¼
–1

ME

X1
n¼0

ð1þ k9n –h9nÞ
qPnðcos�Þ

q�

¼ ð1–h91Þcosð�=2Þ
4ME sin2�=2

–
X1
n¼0

ðk9n – ðh9n –h91ÞÞ
qPn cos�ð Þ

q�

½48�

which has a ��2 singularity for � small. The tilt is
thus much more sensitive to local loads than the
other observables we have so far discussed.

The remaining Green function is that for strain,
specifically for the strain in the direction of the load

e�� ¼
1

a

quh

q�
þ uz

a

from which the Green function is, from [41] and [43],

G�� ¼
1

ME

X1
n¼0

h9nPnðcos �Þ þ 1

ME

X1
n¼0

l9n
q2Pnðcos �Þ

q�2

¼ h91
2MEsin �=2

þ 1

ME

X1
n¼0

h9n – h91ð ÞPnðcos �Þ

þ l91
ME

X1
n¼0

1

n

q2Pnðcos �Þ
q�2

þ 1

ME

X1
n¼0

l9n – l91ð Þ

� q2Pnðcos �Þ
q�2

¼ h91
2MEsin �=2

þ 1

ME

X1
n¼0

ðh9n – h91ÞPn cos�ð Þ

þ l91
ME

1þ sin�=2þ sin2�=2

4sin2�=2½1þ sin�=2�

þ 1

ME

X1
n¼0

l9n – l91ð Þ q
2Pn cos �ð Þ

q�2
½49�

which again shows a near-field singularity of ��2.
This behavior also holds for the strain perpendicular
to the direction to the load; since this is given by

uz

a
þ cos �

sin �

uh

a
½50�

there is no need to compute a separate Green func-
tion for it. The Green function for linear strain that
would be used in [39] is

GL �; �ð Þ ¼ G�� �ð Þcos2 �

þ Gz �ð Þ
a
þ cot �

Gh �ð Þ
a

� �
sin2 � ½51�

where � is the azimuth of the load relative to the
direction of extension. Areal strain has a complicated
dependence on distance, because it is zero for a point
load on a halfspace, except right at the load.

All of the Green functions are computed by finding
the load Love numbers for a range of n, and forming the
various sums. Farrell (1972) formed the sums up to
n¼ 10 000; the Love numbers can be computed at
values of n spaced logarithmically and interpolated to
intermediate values. Several numerical methods to
accelerate the convergence of the sums are described
by Farrell (1972) and Francis and Dehant (1987). The
Green functions tabulated by Farrell (1972) (with the
addition of the potential function by Farrell (1973)) are
still widely used; Jentzsch (1997) tabulates a set for the
PREM model. Kamigaichi (1998) has discussed the
variations in the strain and tilt Green functions at shal-
low depths, forming sums up to n¼ 4� 106; the results
show a smooth transition between the surface functions
given here, and the Boussinesq results for the response of
a halfspace at depth. Such burial does however eliminate
the singularity in the strain Green functions.
Examinations of the extent to which local structure,
particularly lateral variations, affects computed load
tides, have not be plentiful – perhaps mostly because
the data most sensitive to such effects, strain and tilt, are
affected by other local distortions (Section 3.06.6.1). As
with the Love numbers for the body tides, the load Love
numbers will be affected by rotation, ellipticity, aniso-
tropy, and anelasticity. The first two produce, again, a
resonant response from the NDFW, though only for
loads of degree 2 and order 1 (Wahr and Sasao, 1981);
Pagiatakis (1990) has examined effects from the others.

It is also possible to define load Love numbers,
and Green functions derived for them, for transverse
rather than normal stress, to describe the deformation
of the Earth by wind stress or ocean currents, includ-
ing tidal currents; see Merriam (1985, 1986) and
Wilhelm (1986).
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3.06.4.3 Ocean Tide Models

Of course, to compute loads, we need a description of
the ocean tides. Producing such models globally is a
difficult task that has been pursued for some time
(Cartwright, 1977, 1999). The intractability of the
relevant equations, the complexity of the geometry,
and the sensitivity of the results to details in the
models long precluded numerical solutions, one dif-
ficulty being that the oceans have barotropic modes
of oscillation with periods close to the diurnal and
semidiurnal tidal bands. At the same time, it was very
difficult to measure tides in deep water. All this
meant that until recently there were no good tidal
models for computing loads.

From the Earth-tide standpoint what is impor-
tant is that increasing computational power has
finally rendered numerical solutions possible for
realistic geometries, and that satellite altimetry has
provided data with global coverage (Le Provost
et al., 1995, 1998; Andersen et al., 1995; Shum et al.,
1997; Desai et al., 1997). The ocean models now
available are often adequate to produce estimated
loads that are as accurate as available Earth-tide
measurements.

Perhaps the biggest difficulty in modeling the
tides is the need to represent the bathymetry in
adequate detail in the model, especially in shallow
water, where the wavelengths are short. This need,
and the relatively coarse spacing of the altimetry
data, has meant that tidal models are still divided
into two groups: global and local. Global models are
computed on a relatively coarse mesh (say 0.5�), and
rely heavily on altimetry data (e.g., Egbert and
Erofeeva, 2002); they often cannot adequately
model the resonances that occur in some bodies of
water (such as the Bay of Fundy), for which local
models are required: these use a finer mesh, and often
rely more on local tide-gauge data. Obviously, a local
model is not important for computing loads unless
the data are collected close by.

Most tidal models are given for particular tidal
constituents, usually at least one diurnal and one
semidiurnal. Unless a local resonance is present, the
loads for other harmonics can be found by scaling
using the ratios of the amplitudes in the equilibrium
tide (Le Provost et al., 1991).

3.06.4.4 Computational Methods

Essentially all load programs perform the convolution
[39] directly, either over the grid of ocean cells

(perhaps more finely divided near the load) or over a
radial grid. Two that are generally available are
GOTIC (Matsumoto et al., 2001) and SPOTL
(Agnew, 1996). Bos and Baker (2005) have recently
compared the results from four programs, albeit only
for gravity, which is least sensitive to local loads. They
found variations of a few percent because of different
computational assumptions, and different coastline
models. Most global ocean-tide models do not repre-
sent coastlines more accurately than their rather
coarse mesh size, so some local refinement is needed.
Fortunately, this problem has essentially been solved
by the global coastal representations made available by
Wessel and Smith (1996) – except in the Antarctic,
where their coastline is (in places) the ice shelves,
beneath which the tides are still present.

Figure 8 shows the computed loads for a region
(Northwest Europe) with large and complex local
tides. The vertical displacement and gravity loads
have roughly similar forms, but the tilt and linear
strain have a very different pattern, being much more
concentrated near the coast, as might be expected
from the different near-field behavior of their
Green functions.

3.06.5 Analyzing and Predicting
Earth Tides

As noted in Section 3.06.1, the tidal forces can be
described to extremely high precision and accuracy,
and the body tides and tidal loading can often be
modeled to an accuracy that exceeds that of tidal
measurements. Such measurements do however pro-
vide a check on these models, and in some cases allow
them to be improved, so we briefly describe how tidal
parameters are extracted from the data, and how the
data are obtained. This is important whether we aim
to measure the tides, use modeled tides as a calibra-
tion signal, or predict the tides to high accuracy to
check the quality of ongoing measurements.

3.06.5.1 Tidal Analysis and Prediction

As noted in Section 3.06.1, the analysis of time series
for tidal response is just a special case of finding the
transfer function, or admittance, of a linear system, a
concept first introduced into tidal analysis by Munk
and Cartwright (1966) . Because the tides are very
band-limited, we can find the ‘tidal admittance’,
WT( f ), only for frequencies at which XT( f ) contains
significant energy. For ocean tides it is most
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meaningful to take xT(t) to be the local value of the
tide-raising potential, or for some analyses the tide
computed for a nearby site (Cartwright et al., 1969). In
Earth-tide studies it may be more convenient to take

as reference the tides expected for an oceanless, but
otherwise realistic, earth model, so that any depar-
ture of W( f ) from unity will then reflect the effect of
ocean loads or the inadequacy of the model.
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Figure 8 Loads for the M2 tide, computed by the Green function method for the TPXO6.2 tidal model of Egbert and

Erofeeva (2002), combined with a detailed model of the North Sea tides by the same group. Only the amplitude of the

complex-valued quantities is shown; for tilt, displacement, and strain the value is taken along the azimuth that maximizes the

amplitude. The units are nm s�2 for gravity, mm for the potential height and the displacements, and 10�9 for tilt and strain; for
clarity the contour interval is logarithmic for the last two.
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The theory described in Section 3.06.3.2 shows
that, except for the NDFW resonance, W( f ) for an

oceanless Earth varies only very slightly with fre-

quency. The ocean tides show more variability, but

only in limited areas do they have resonances within

the tidal bands, so that in general the ocean load also

varies smoothly with frequency (Garrett and Munk,

1971). Even the local resonances in certain bays and

gulfs have a low enough Q that the response is

smoothly varying over (say) the entire semidiurnal

band (Ku et al., 1985). So, the more closely spaced two

frequencies are, the closer the corresponding values

of W( f ) will be, an assumption Munk and Cartwright

(1966) dubbed the ‘credo of smoothness’.
A naive way to find the tidal response is to take

the Fourier transform of the data (using a fast Fourier

transform), and use the amplitudes and phases of the

result. This is a poor choice for two reasons. One

problem is that the frequencies computed by the

usual definition of the discrete Fourier transform

usually do not coincide with the frequencies of the

tidal harmonics – especially if the length of the trans-

form, N, is chosen to work well with a fast Fourier

transform algorithm. In addition, any noise will bias

the amplitudes of the coefficients to be larger than

the true values.
If spectral analysis is to be used, a much better

method is the cross-spectral technique described by

Munk and Cartwright (1966) . This method has

lower-frequency resolution than others to be dis-

cussed, but makes the fewest assumptions about the

form of W( f ), and also provides estimates of the noise

as a function of frequency. This is useful because

many methods assume the noise to be the same at

all frequencies, and it may not be; in particular, the

noise is sometimes observed to rise sharply in the

tidal bands, a phenomenon called ‘tidal cusping’

(Munk et al., 1965; Ponchaut et al., 2001; Colosi and

Munk, 2006). The cross-spectral method does how-

ever require large amounts of data to perform

reliably. The procedure is described in full by

Munk and Cartwright (1966) ; it depends on finding

the cross-spectrum between a noise-free reference

series and the data, using a slow Fourier transform

to make the Fourier frequencies match the tidal

frequencies relatively well, windowing to reduce

bias from spectral leakage, and averaging to get a

statistically consistent estimate.
By far the commonest approach to tidal analysis is

least-squares fitting of a set of sinusoids with known

frequencies – chosen, of course, to match the

frequencies of the largest tidal constituents. That is,
we aim to minimize the sum of squares of residuals:

XN

n¼0

yn –
XL

l¼1

ðAl cosð2�fl tnÞ þ Bl sinð2�fl tnÞÞ
" #2

½52�

which expresses the fitting of L sine–cosine pairs with
frequencies fl to the N data yn, the f ’s being fixed to
the tidal harmonic frequencies and the A ’s and B ’s
being solved for.

The usual assumption behind a least-squares ana-
lysis is that the residual after fitting the sinusoids will
be statistically independent random variables; but
this is valid only if the noise spectrum is white,
which is usually not so. One departure from white-
ness is the presence of increased long-period noise
outside the tidal bands; this can be removed by filter-
ing the data before analyzing it. A more difficult
problem is the tidal cusping just referred to. If the
noise spectrum rises to a higher level inside the tidal
bands, perhaps very much higher around the fre-
quencies of the radiational tides, this needs to be
allowed for in fitting the tides, and in finding the
errors in the final tidal parameters. In particular, the
relative error for a harmonic of amplitude A analyzed
over a total time span T is approximately 2P( f )/A2T,
where P( f ) is the noise power spectral density at the
frequency of that harmonic (Munk and Hasselmann,
1964; Cartwright and Amin, 1986). If excess energy in
the tidal bands is not allowed for, the errors can be
underestimated by significant amounts.

The main problem with using [52] directly for tidal
analysis comes from the fine-scale frequency structure
of the tidal forcing, particularly the nodal modulations.
Leaving such variations out of [52], and only solving for
a few large harmonics, will be inaccurate. But the
simplest way of including nodal and other modulations,
namely by including the satellite harmonics in [52], is
not possible because the solution will be unstable unless
we have 19 years of data. This instability is general, and
applies whenever we try to solve for the amplitudes of
harmonics separated in frequency by less than 1/T,
where T is the record length (Munk and Hasselmann,
1964). This problem is not restricted to the nodal
modulation; for example, with only a month of data,
we cannot get reliable results for the P1 and K1 lines,
since they are separated by only 0.15 cycles/month.

All least-squares tidal analysis thus has to include
assumptions about tidal harmonics closely spaced in
frequency – which comes to an implicit assumption
about the smoothness of the admittance. Usually, the
admittance is assumed to be constant over frequency
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ranges of width 1/T around the main constituents,
summing all harmonics within each such range to
form (slowly varying) sinusoidal functions to replace
the sines and cosines of [52]. Of course, if we then
wish to assign the resulting amplitude to a particular
harmonic (say M2), we need to correct the ampli-
tudes found by the ratio of this sinusoidal function to
the single harmonic. All this adds complexity to the
existing analysis programs (Tamura et al., 1991;
Wenzel, 1996; Pawlowicz et al., 2002; Foreman,
2004; Van Camp and Vauterin, 2005).

A quite different approach to tidal analysis is the
‘response method’, also introduced by Munk and
Cartwright (1966) . This does not use an expansion
of the tidal potential into harmonics, but rather treats
it as a time series to be fit to the data, using a set of
weights to express the admittance. Lambert (1974)
and Merriam (2000) have applied this method to
Earth tides, and it is standard in the estimation of
tides from satellite altimetry.

The basic approach is to find the tides as a
weighted sum over the time variations of each sphe-
rical harmonic (not harmonics in time):

yðtÞ ¼
X1
n¼2

Xn

m¼ – n

XLnm

l¼ –Lnm

wm
nl ½am

n ðt – l�Þ� þ ibm
n ðt – l�Þ� ½53�

where the am
n ðtÞ and bm

n ðtÞ are the time-varying func-
tions that sum to give the potential in [8]. The
complex-valued weights wm

nl are called ‘response
weights’; their Fourier transform gives the admittance
W( f ). So, for example, a single complex weight for
each n and m (i.e., setting Lnm¼ 0) amounts to assum-
ing a constant W for each degree and order – though
even one complex weight can express both amplitude
and phase response. Including more weights, with time
lags (the sum over l ), allows the admittance to vary
with frequency, smoothly, across each tidal band. The
lag interval is usually chosen to be 2 days, which
makes the admittance smooth over frequencies of
greater than 0.5 cpd; note that the lags can include
the potential at future times because the admittance
is being fit over only a narrow frequency band.

3.06.5.1.1 Predicting tides

All tidal predictions, other than those based on the
response method, use a harmonic expansion similar
to eqn [11]:

xðtÞ ¼
XK

k¼1

Ak cos½2�fkðt – t0Þ þ �0
kðt0Þ þ �k� ½54�

where the Ak’s and �k’s are amplitudes and phases
(the ‘harmonic constants’) for whatever is being pre-
dicted. The fk’s are the frequencies of the different
harmonics, and the �0

k ’s are the phases of these at a
reference time t0.

Any user of tidal constants should be aware of
two pitfalls relating to the conventions for phase.

One is a sign convention: whether positive phases

represent lags (true in much of the older literature)

or leads. The other is the reference time used. The

‘local phase’ is one choice, in which zero phase (for

each harmonic) is at a time at which the potential

from that harmonic is locally a maximum. For ocean

tides this phase is usually denoted as � (with posi-

tive phases for lags). For Earth tides local phase is

convenient because on a SNREI Earth it is zero for

gravity, NS tilt, vertical displacement, and areal

strain. The other choice is the Greenwich phase G,

in which the phase is taken to be zero (for each

harmonic) at a time at which its potential would be

a maximum at 0 longitude. If given for a number of

places, this phase provides a ‘snapshot’ of the dis-

tribution of the tides at a particular instant; this

phase is the norm in ocean-tide models. Since the

time between maximum at Greenwich and maxi-

mum at a local place depends only on the spherical

harmonic order m and on the Earth rotating 360�

every 24 hs, the relationship between k and G is

simple, and depends only on the tidal species num-

ber m and the longitude �W; the frequency of the

harmonic is not involved. The relationship is con-

ventionally written as

G ¼ � –m�W

where for both phases a lag is taken to be positive,
and longitude �W to be positive going West.

The primary complications in predicting the tides
come, once again, from the various long-term

modulations, notably the nodal modulations discussed

in Section 3.06.2.3. Classical prediction methods,

which used only a few constituents to minimize com-

putation, applied nodal corrections to the Ak’s and �k’s

of these few harmonics to produce new values that

would be valid for (say) each year; a complication,

since the corrections themselves change with time.
A more computationally intensive but conceptually

simpler approach uses a large number of harmonics in

the sum [54], including all satellite harmonics, thus

automatically producing the modulations. The ampli-

tudes and phases of a few harmonics are interpolated

to give those of all harmonics, again on the assumption
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that the admittance is smooth; for example, through a
spline interpolation of the real and imaginary parts of
W( f ) (Le Provost et al., 1991).

3.06.6 Earth-Tide Instrumentation

Because the Earth tides are so small, building instru-
ments to detect them has long been a challenge,
though an easier one over time, as sensitive transdu-
cers and digital recording have become more readily
available.

The earliest measurements were of tidal tilts, and
over the years a wide variety of tiltmeters have been
designed; Agnew (1986) describes many of them, and
the designs have changed little since then. They
generally fall into two classes: small instruments
that sense the motion of a pendulum or of a bubble
in a fluid, and larger systems that measure the motion
of a fluid in a long pipe. The former are usually
referred to as short-base tiltmeters, and are now
generally installed in boreholes in order to obtain
adequate thermal stability and relatively low rates
of drift. The latter, called long-base systems, are
usually installed in tunnels a few tens of meters
long or longer (e.g., d’Oreye and Zürn, 2005), though
a very few instruments, several hundred meters in
length, have been installed near the ground surface.
A similar division exists in strainmeters (Agnew,
1986): there are very short-base systems, many
installed in boreholes, longer instruments installed
in tunnels, and a few very long instruments, using
laser light rather than physical length standards, some
at the surface and others underground. One other
class of instrument sensitive to tidal deformations is
the ring-laser gyroscope (Schreiber et al., 2003),
which detects tilts that alter the orientation of the
instrument relative to the Earth’s spin axis.

Historically, the second type of Earth tide to be
detected was changes in gravity, and many such
measurements have been made with a variety of
types of gravimeters (Torge, 1989). The bulk of
these used metallic springs, arranged so that changes
in gravity caused extension of the spring, leading to
significant phase lags and hysteresis. Such measure-
ments are however significant in showing the
widespread effects of load tides (Llubes and
Mazzega, 1997), and provided early evidence of the
effect of the NDFW on tidal data (see, e.g., Neuberg
et al. (1987)). These uncertain phase lags are reduced
by applying feedback, which was first done in the
instrument of LaCoste and Romberg (Harrison and

LaCoste, 1978); this, supplied with electronic feed-
back, remains useful for tidal measurements. The
lowest-noise tidal gravimeter is the superco-
nducting gravimeter (Goodkind, 1999), in which a
superconducting sphere is suspended in a magnetic
field at liquid-helium temperatures. This gives a
system with very low noise (especially at long peri-
ods) and little drift. At the periods of the semidiurnal
tides, the noise ranges from –130 to –140 dB (relative
to 1 m2 s�4), with the noise being about 5 dB higher in
the diurnal band (Rosat et al., 2004); these levels are
about 5 dB below those of spring gravimeters
(Cummins et al., 1991). Because the noise is so low,
small tidal signals can be measured with great preci-
sion; recent examples include the detection of
loading from small nonlinear ocean tides (Merriam,
1995; Boy et al., 2004) and the discrimination between
the loads from equilibrium and dynamic models for
the long-period ocean tides (Iwano et al., 2005; Boy
et al., 2006a). The superconducting gravimeter also
can provide accurate measurements of the NDFW
resonance (Zürn et al., 1986; Florsch et al., 1994; Sato
et al., 1994, 2004). However, unlike the spring gravi-
meters, the superconducting instrument is not
portable.

Comparing the size of the load tides in Figure 8
with the rms body tides in Figure 6 shows that even
the largest loads are but a few percent of the total
gravity tide. So, to get accurate measurements of the
load tides, the gravimeter must be calibrated with
extreme accuracy, at least to a part in 103. An even
higher level of accuracy is needed if tidal gravity
measurements are to discriminate between the pre-
dictions of different Earth models. Calibration to this
level has proved to be difficult. One method, usable
only with spring gravimeters, is to make gravity
measurements over a wider range and interpolate to
the small range of the tides. For superconducting
gravimeters, which cannot be moved, one method is
to sense the response to known moving masses
(Achilli et al., 1995); this is not in general possible
with spring gravimeters because of their more com-
plicated mass distribution. Another method,
applicable to both types, is to place the instrument
on a platform that can be moved vertically by known
amounts to produce small accelerations of the same
size as the tides (Richter et al., 1995). The most
common approach is now to operate an absolute
gravimeter next to a tidal system for several days
and find the scale factor by direct comparison
(Hinderer et al., 1991; Francis et al., 1998; Tamura
et al., 2005). For absolute systems the scale is set by
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atomic standards known to much higher accuracy
than is required, and comparison tests (Francis and
van Dam, 2002) confirm that this method can provide
calibrations to 10�3. Baker and Bos (2003) summarize
tidal measurements from both spring and supercon-
ducting gravimeters; from the greater scatter for the
in-phase components of the residual tide they con-
clude that systematic errors in the calibration remain,
with errors up to 4� 10�3 in some cases. These
authors, and Boy et al. (2003), find too much scatter
in the results to distinguish between different Earth
models, or to detect any latitude dependence.

The newest procedures for measuring Earth tides
are the techniques of space geodesy. Since the
induced potential affects satellite orbits, modeling of
these provides constraints on k2; a particularly nota-
ble result was that of Ray et al. (2001), who were able
to measure the phase lag of the solid-Earth compo-
nent of the M2 tide as 0.204� � 0.047�. Positioning
techniques such Very Long Baseline Interferometry
(VLBI) and GPS are sensitive to all displacements,
including tides. VLBI data have been used to observe
the body tides, and now have sufficient precision to
be sensitive to load tides as well (Sovers, 1994; Haas
and Schuh, 1998; Petrov and Ma, 2003); the currently
available series can provide the amplitudes of tidal
constituents to better than 1 mm. However, VLBI
data are available only at a few places, whose number
is not increasing.

Continuous GPS data, in contrast, are available
from many locations; and it is important that the tidal
displacements of such locations be accurately mod-
eled, since any inaccuracy (especially in the vertical)
will bias GPS estimates of zenith delay and hence of
water vapor (Dragert et al., 2000; Dach and Dietrich,
2000); for the standard 1-day processing, unmodeled
tidal displacements may produce, through aliasing,
spurious long-period signals (Penna and Stewart,
2003).

Tidal motions can be found with GPS in two
ways. One is to process data over short time spans
(say, every 3 h) to produce a time series that can then
be analyzed for tidal motions. The other is to include
the complex amplitude of some of the larger tidal
constituents (in all three directions) as unknowns in
the GPS solution, solving for any unmodeled tides.
Baker et al. (1995) and Hatanaka et al. (2001) took the
first approach for two local areas, finding good agree-
ment between observed and predicted loads. Khan
and Scherneck (2003) also used this method, finding
that the best approach was to estimate zenith delays
over the same (hourly) time span as the displacement

was found for. Schenewerk et al. (2001) used the
second method for a global set of stations, taking
data from every third day over 3 years; they found
generally good agreement with predicted loads
except at some high-latitude sites, probably because
of using an older ocean-tide model; Allinson et al.
(2004) applied this method to tidal loading in Britain.
King (2006) compared the two methods for the GPS
site at the South Pole (for which only load tides are
present), using about 5 years of data. He found that
the second method gave better results in the vertical;
the two methods had comparable errors in the hor-
izontal, with the precision being somewhat less than
1 mm. The K1 and K2 tides give poor results because
their frequency is very close to the repeat time of the
GPS constellation and its first harmonic. King and
Padman (2005) used GPS to validate different ocean-
tide models around Antarctica, with models specifi-
cally designed for this region predicting the loads
better than the older global models.

3.06.6.1 Local Distortion of the Tides

King and Bilham (1973) and Baker and Lennon
(1973) introduced an important concept into Earth-
tide studies by suggesting that much of the scatter in
measurements of tidal tilts was caused by strain tides
which were coupled into tilts by the presence of a
free surface – for example, the tunnel in which such
instruments were often housed. This ‘cavity effect’
(Harrison, 1976) has indeed turned out to be impor-
tant; any strain and tilt measurements not made with
surface-mounted longbase instruments require that a
cavity be created, and any such inhomogeneity in an
elastic material will produce local deformations,
which can produce rotations and strains that modify
the tidal strains and tilts for an Earth with only radial
variations. Other irregularities will have similar
effects; for example, topography, which is to say an
irregular free surface, will also create departures from
what would be seen on a smooth Earth.

The way in which these departures are described
is through the use of coupling matrices (Berger and
Beaumont, 1976; King et al., 1976). We can divide the
actual displacement field in the Earth, u, into two
parts, u0, which is the displacement that would occur
with no cavity (or other inhomogeneity), and �u, the
difference between this ideal and the actual displace-
ment. We can perform the same decomposition on
the strain tensor E and the local rotation vector W:

E ¼ E0 þ �E; W ¼ W0 þ �W
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The additional deformations �E and �W will depend
on the details of the inhomogeneity (e.g., the shape of
the cavity) and on E0, but not on W0 because it is a
rigid rotation. If we suppose E0 to be homogeneous
strain, then �E and �W at any position are linear
functions of E0, and can be related to it by a fourth-
order strain–strain coupling tensor CE and a third-
order strain-rotation coupling tensor CW:

�E ¼ EEE0; �W ¼ CWE0 ½55�

In general, strain–tilt coupling involves both CE

and CW (Agnew, 1986). Near the surface of the Earth
there are only three independent components to E0;

this fact, and the symmetries of the strain tensors,

mean that both CE and CW have nine independent
components.

An analytical solution for CE and CW exists for an
ellipsoidal cavity (Eshelby, 1957); Harrison (1976)

has described results for the case where one axis of
the ellipsoid is vertical: the coupled strains and tilts

are largest when measured in the direction along

which the cavity is smallest, whether the external
strain is in that direction or not. Strain measured

along a long narrow cavity is not amplified very

much. The limit of this is an infinite horizontal cir-
cular tunnel, for which the strains along the tunnel

(or shear strains across it) are unaltered, but both

vertical and horizontal strains are amplified, as has
been observed in cross-tunnel measurements of

strain tides (Itseuli et al., 1975; Beavan et al., 1979;

Takemoto, 1981). Finite element modeling (Berger
and Beaumont, 1976) shows that slight departures

from circularity do not much alter the strain from

wall to wall, but in a square tunnel the strains con-
centrate near the corners; strains along a finite tunnel

are undistorted if they are measured more than one

tunnel diameter away from an end. Tiltmeters
mounted on tunnel walls, or placed on a ledge or

near a crack, will be affected by strain-coupled tilts.
Inhomogeneities (including cavities) create distor-

tion but do not add noise. They thus mean that precise
comparison between data and models is difficult at

best, with the exception of frequency-dependent

effects such as the NDFW. There are analytical meth-
ods for approximating topographic effects (Meertens

and Wahr, 1986), and while it is always possible to

build a finite-element model of any inhomogeneity
(Emter and Zürn, 1985; Sato and Harrison, 1990), not

enough detail of the elastic constants is usually known

to make results from such a model more than a rough
guide. The measurements by Baker (1980), on a pier in

the middle of a tunnel, which showed a 5% change in
tilts measured 0.5 m apart, imply that such modeling
has to be extremely detailed.

One possible way to reduce the importance of
coupling is to arrange the geometry to minimize it.
Measuring strain along a tunnel is one example;
another is measuring tilt in a borehole: since a hor-
izontal strain does not cause rotation of the side of the
borehole, attaching the tiltmeter to this should elim-
inate the cavity effect. An array of such tiltmeters
installed to use observed tides to map crustal inho-
mogeneities (Levine et al., 1989; Meertens et al., 1989)
still produced widely scattered results. A subsequent
test using closely spaced instruments in nominally
uniform geology (Kohl and Levine, 1995) also
showed significant differences between boreholes,
and in one borehole even between two different
positions. These results suggest that any short-base
measurement of tilt may be significantly affected by
local inhomogeneities, and so cannot be accurately
compared with theoretical tidal models.

Sometimes the aim is to use the tides to determine
the effects of the inhomogeneity, so that other signals
seen can be corrected. The most notable case is bore-
hole strainmeters, in which the instrument, hole, and
grout cause the strain inside the instrument wall to be
significantly different from that in the far field. A
simplified model that assumes axial symmetry
(Gladwin and Hart, 1985) provides two coupling
coefficients, one for areal and one for shear strain.
This can be checked using the tides (Hart et al., 1996),
which also allow estimation of a full coupling tensor,
along the lines of eqn [55].
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der Deutschen Geodätischen Kommission, Reihe C.
31: 3–103.

Cartwright D, Munk W, and Zetler B (1969) Pelagic tidal
measurements: A suggested procedure for analysis. EOS
Transactions. American Geophysical Union 50: 472–477.

Cartwright DE (1977) Oceanic tides. Reports on Progress in
Physics 40: 665–708.

Cartwright DE (1999) Tides: A Scientific History. New York:
Cambridge University Press.

Cartwright DE and Amin M (1986) The variances of tidal har-
monics. Deutsche Hydrographische Zeitschrift. 39: 235–253.

Cartwright DE and Edden AC (1973) Corrected tables of tidal
harmonics. Geophysical Journal of the Royal Astronomical
Society 33: 253–264.

Cartwright DE and Tayler RJ (1971) New computations of the
tide-generating potential. Geophysical Journal of the Royal
Astronomical Society 23: 45–74.

Chapman S and Lindzen RS (1970) Atmospheric Tides:
Gravitational and Thermal. New York: Gordon and Breach.

Colosi JA and Munk WH (2006) Tales of the venerable Honolulu
tide gauge. Journal of Physical Oceanography 36: 967–996.

Cummins P, Wahr JM, Agnew DC, and Tamura Y (1991)
Constraining core undertones using stacked IDA gravity
records. Geophysical Journal International 106: 189–198.

Dach R and Dietrich R (2000) Influence of the ocean loading
effect on GPS derived precipitable water vapor. Geophysical
Research Letters 27: 2953–2956, doi:10.1029/
1999GL010970.

Dahlen FA (1993) Effect of the Earth’s ellipticity on the lunar
potential. Geophysical Journal International 113: 250–251.

Dahlen FA and Tromp J (1998) Theoretical Global Seismology.
Princeton, NJ: Princeton University Press.

Dehant V, Defraigne P, and Wahr JM (1999) Tides for a con-
vective Earth. Journal of Geophysical Research
104: 1035–1058.

Desai SD (2002) Observing the pole tide with satellite altimetry.
Journal of Geophysical Research 107(C11): 3186,
doi:10.1029/2001JC001224.

Desai SD, Wahr JM, and Chao Y (1997) Error analysis of
empirical ocean tide models estimated from Topex/
Posecidon altimetry. Journal of Geophysical Research
102: 25,157–25,172.

Doodson AT (1921) The harmonic development of the tide
generating potential. Proceedings of the Royal Society
Series A 100: 305–329.

d’Oreye NF and Zürn W (2005) Very high resolution long-base-
line water-tube tiltmeter to record small signals from Earth
free oscillations up to secular tilts. Review of Scientific
Instruments 76: 024,501.

Dragert H, James TS, and Lambert A (2000) Ocean loading
corrections for continuous GPS: A case study at the
Canadian coastal site Holberg. Geophysical Research
Letters 27: 2045–2048.

Egbert GD and Erofeeva SY (2002) Efficient inverse modeling of
barotropic ocean tides. Journal of Atmospheric and Oceanic
Technology 19: 183–204.

Emter D and Zürn W (1985) Observations of local elastic effects
on earth tide tilts and strains. In: Harrison JC (ed.) Earth
Tides, pp. 309–327. New York: Van Nostrand Reinhold.

Eshelby JD (1957) The determination of the elastic field of an
ellipsoidal inclusion and related problems. Proceedings of
the Royal Society Series A 241: 376–396.

Farrell WE (1972) Deformation of the earth by surface loads.
Reviews of Geophysics 10: 761–797.

Farrell WE (1973) Earth tides, ocean tides, and tidal loading.
Philosophical Transactions of the Royal Society Series A
272: 253–259.

Florsch N, Chambat F, Hinderer J, and Legros H (1994) A simple
method to retrieve the complex eigenfrequency of the
Earth’s nearly diurnal free wobble: Application to the
Strasbourg superconducting gravimeter data. Geophysical
Journal International 116: 53–63.

Foreman MGG (2004) Manual for Tidal Heights Analysis and
Prediction., Pacific Marine Science Report 77-10. Institute of
Ocean Sciences, Patricia Bay, Sidney, BC.

Francis O and Dehant V (1987) Recomputaiton of the Green’s
functions for tidal loading estimations. Bulletin d’Information
des Marées Terrestres 100: 6962–6986.

Francis O and van Dam T (2002) Evaluation of the precision of
using absolute gravimeters to calibrate superconducting
gravimeters. Metrologia 39: 485–488.

Francis O, Niebauer TM, Sasagawa G, Klopping F, and
Gschwind J (1998) Calibration of a superconducting

192 Earth Tides



gravimeter by comparison with an absolute gravimeter FG5
in Boulder. Geophysical Research Letters 25: 1075–1078.

Garrett C and Munk WH (1971) The age of the tide and the Q of
the oceans. Deep-Sea Research 18: 493–503.

Gladwin MT and Hart R (1985) Design parameters for borehole
strain instrumentation. Pure and Applied Geophysics
123: 59–80.

Goodkind JM (1999) The superconducting gravimeter. Review
of Scientific Instruments 70: 4131–4152.

Haas R and Schuh H (1998) Ocean loading observed by geo-
detic VLBI. In: Ducarme B and Paquet P (eds.) Proceedings
of the 13th International Symposium on Earth Tides,
pp. 111–120. Brussels: Observatoire Royal de Belgique.

Harrison JC (1971) New Programs for the Computation of Earth
Tides, Internal Technical Report. CIRES, University of
Colorado.

Harrison JC (1976) Cavity and topographic effects in tilt and
strain measurement. Journal of Geophysical Research
81: 319–328.

Harrison JC (1985) Earth Tides, New York: Van Nostrand
Reinhold.

Harrison JC and Herbst K (1977) Thermoelastic strains and tilts
revisited. Geophysical Research Letters 4: 535–537.

Harrison JC and LaCoste LJB (1978) The measurement of sur-
face gravity. In Mueller II (ed.) Applications of Geodesy to
Geodynamics: Ninth GEOP Conference, pp. 239–243,
Columbus, OH: Ohio State University. rep. 280.

Hart RHG, Gladwin MT, Gwyther RL, Agnew DC, and Wyatt FK
(1996) Tidal calibration of borehole strainmeters: Removing
the effects of local inhomogeneity. Journal of Geophysical
Research 101: 25,553–25,571.

Hartmann T and Wenzel H-G (1995) The HW95 tidal potential
catalogue. Geophysical Research Letters 22: 3553–3556.

Hatanaka Y, Sengoku A, Sato T, Johnson JM, Rocken C, and
Meertens C (2001) Detection of tidal loading signals from
GPS permanent array of GSI Japan. Journal of the Geodetic
Society of Japan 47: 187–192.

Haubrich RA and Munk WH (1959) The pole tide. Journal of
Geophysical Research 64: 2373–2388.

Herring TA, Mathews PM, and Buffett BA (2002) Modeling of
nutation-precession: Very long baseline interferometry
results. Journal of Geophysical Research 107(B4): 2069,
doi:10.1029/2001JB000165.

Hewitt E and Hewitt R (1979) The Gibbs-Wilbraham phenom-
enon: An episode in Fourier analysis. Archives for the History
of the Exact Sciences 21: 129–169.

Hinderer J, Florsch N, Maekinen J, Legros H, and Faller JE
(1991) On the calibration of a superconducting gravimeter
using absolute gravity measurements. Geophysical Journal
International 106: 491–497.

Itsueli UJ, Bilham R, Goulty NR, and King GCP (1975)
Tidal strain enhancement observed across a tunnel.
Geophysical Journal of the Royal Astronomical Society
42: 555–564.

Iwano S, Fukuda Y, Sato T, Tamura Y, Matsumoto K, and
Shibuya K (2005) Long-period tidal factors at Antarctica
Syowa Station determined from 10 years of superconducting
gravimeter data. Journal of Geophysical Research
110: B10,403, doi:10.1029/2004JB003551.

Jeffreys H (1976) The Earth: Its Origin, History and Physical
Constitution. Cambridge: Cambridge University Press.

Jeffreys H and Vincente RO (1957) The theory of nutation and
the variation of latitude. Monthly Notices of the Royal
Astronomical Society 117: 142–161.

Jentzsch G (1997) Earth tides and Ocean tidal loading.
In: Wilhelm H, Zürn W, and Wenzel HG (eds.) Tidal
Phenomena, pp. 145–171. Berlin: Springer-Verlag.

Jentzsch G (2006) Proceedings of the 15th International
Symposium on Earth Tides. Journal of Geodynamics 41: 1–4.

Kamigaichi O (1998) Green functions for the earth at borehole
installation sensor depths for surface point load. Papers in
Meteorology and Geophysics 48: 89–100.

Khan SA and Scherneck HG (2003) The M2 ocean tide loading
wave in Alaska: Vertical and horizontal displacements,
modelled and observed. Journal of Geodesy 77: 117–127,
doi:10.1007/s00190-003-0312-y.

King GCP and Bilham R (1973) Tidal tilt measurement in Europe.
Nature 243: 74–75.

King GCP, Zürn W, Evans R, and Emter D (1976) Site correction
for long-period seismometers, tiltmeters, and strainmeters.
Geophysical Journal of the Royal Astronomical Society
44: 405–411.

King M (2006) Kinematic and static GPS techniques for esti-
mating tidal displacements with application to Antarctica.
Journal of Geodynamics 41: 77–86.

King MA and Padman L (2005) Accuracy assessment of ocean
tide models around Antarctica. Geophysical Research
Letters 32: L23,608, doi:10.1029/2005GL023901.

Kohl ML and Levine J (1995) Measurement and interpretation of
tidal tilts in a small array. Journal of Geophysical Research
100: 3929–41.

Ku LF, Greenberg DA, Garrett C, and Dobson FW (1985) The
nodal modulation of the M2 tide in the Bay of Fundy and Gulf
of Maine. Science 230: 69–71.

Kudryavtsev SM (2004) Improved harmonic development of the
Earth tide-generating potential. Journal of Geodesy
77: 829–838.

Lambert A (1974) Earth tide analysis and prediction by the
response method. Journal of Geophysical Research
79: 4952–4960.

Le Provost C, Bennett AF, and Cartwright DE (1995) Ocean
tides for and from TOPEX / POSEIDON. Science
267: 639–642.

Le Provost C, Lyard F, and Molines J (1991) Improving ocean
tide predictions by using additional semidiurnal constituents
from spline interpolation in the frequency domain.
Geophysical Research Letters 18: 845–848.

Le Provost C, Lyard F, Molines JM, and Genco ML (1998) A
hydrodynamic ocean tide model improved by assimilating a
satellite altimeter-derived data set. Journal of Geophysical
Research 103: 5513–5529.

Levine J, Meertens C, and Busby R (1989) Tilt observations
using borehole tiltmeters: 1. Analysis of tidal and secular tilt.
Journal of Geophysical Research 94: 574–586.

Llubes M and Mazzega P (1997) Testing recent global ocean
tide models with loading gravimetric data. Progress in
Oceanography 40: 369–383.

Longman IM (1959) Formulas for computing the tidal accelera-
tions due to the Moon and the Sun. Journal of Geophysical
Research 64: 2351–2355.

Love AEH (1911) Some Problems of Geodynamics. Cambridge:
Cambridge University Press.

Mathews PM and Guo JY (2005) Viscoelectromagnetic coupling
in precession-nutation theory. Journal of Geophysical
Research 110(B2): B02402, doi:10.1029/2003JB002915.

Mathews PM, Buffett BA, and Shapiro II (1995a) Love numbers
for diurnal tides: Relation to wobble admittances and reso-
nance expansion. Journal of Geophysical Research
100: 9935–9948.

Mathews PM, Buffett BA, and Shapiro II (1995b) Love numbers
for a rotating spheroidal Earth: New definitions and numer-
ical values. Geophysical Research Letters 22: 579–582,
doi:10.1029/95GL00161.

Mathews PM, Dehant V, and Gipson JM (1997) Tidal station
displacements. Journal of Geophysical Research
102: 20,469–20,477.

Mathews PM, Herring TA, and Buffett BA (2002) Modeling of
nutation and precession: New nutation series for nonrigid

Earth Tides 193



Earth and insights into the Earth’s interior. Journal of
Geophysical Research 107(B4): 2068, doi:10.1029/
2001JB000390.

Matsumoto K, Sato T, Takanezawa T, and Ooe M (2001)
GOTIC2: A program for computation of oceanic tidal loading
effect. Publications of the International Latitude Observatory,
Mizusawa 47: 243–248.

McCarthy DD and Pétit G (2004) IERS Conventions (2003) IERS
Technical Note 32. Frankfurt am Main: Verlag des
Bundesamts für Kartographic und Geodäsic.
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