
1

C
H

A
P

T
E

R

INTRODUCTION

Mobile phones are the new vehicle for bringing interactive graphics technologies to
consumers. Graphics that in the 1980s was only seen in industrial flight simulators and
at the turn of the millennium in desktop PCs and game consoles is now in the hands
of billions of people. This book is about the technology underpinnings of mobile three-
dimensional graphics, the newest and most rapidly advancing area of computer graphics.

Computer graphics has been around since the 1960s. Its application areas range from user
interfaces to video gaming, scientific visualization, special effects in movies, and even
full-length animated films. In the field of computer graphics, it is the subset of three-
dimensional (3D) graphics that produces the most life-like visuals, the “wow” effects,
and the eye-candy. Since the late 1990s, almost all computer games, and more recently
even operating systems such as OS X and Windows Vista, have come to rely heavily on
real-time 3D graphics. This has created an enormous drive for graphics hardware devel-
opment. Dedicated graphics hardware is ubiquitous on desktop and laptop computers,
and is rapidly becoming common on high-end mobile phones. Low-cost software-based
implementations bring 3D graphics to mass-market consumer phones as well. Computer
graphics is nowadays an integral part of the phone user experience: graphics is the face of
the device.

Mobile phones, also known as cellular or cell phones, have recently become universal
communication and computation devices. In countries such as the UK there are more
mobile phone subscriptions than there are people. At the same time, the capabilities of
the devices are improving. According to Moore’s law [Moo65], the transistor density on

1

2 INTRODUCTION C H A P T E R 1

integrated circuits roughly doubles every one or two years; today’s high-end mobile phone
has more computational power than a late 1990s home PC. The display resolutions of
mobiles will soon reach and surpass that of conventional broadcast television, with much
better color fidelity. Together, these advances have resulted in a truly mobile computer.
As a side effect, real-time, interactive 3D graphics has become feasible and increasingly
desirable for the masses.

1.1 ABOUT THIS BOOK

This book is about writing real-time 3D graphics applications for mobile devices. We
assume the reader has some background in mathematics, programming, and computer
graphics, but not necessarily in mobile devices.

The 3D graphics capabilities of mobile devices are exposed through two standardized
application programming interfaces (APIs): OpenGL ES, typically accessed through C or
C++, and M3G, for mobile Java. We introduce the latter standard in terms of the former.
As OpenGL ES is utilized as the fundamental building block in many real-world M3G
implementations, expressing this relationship explicitly is highly useful for describing the
inner workings of M3G.

The two APIs are equally suited to programming embedded devices other than mobile
phones, from car navigation systems to display screens of microwave ovens. However,
most of such platforms are closed—parties other than the device manufacturer cannot
develop and install new applications on them. By contrast, most mobile phones are open:
third parties such as professional software developers, students, and individual enthusi-
asts can program, install, and distribute their own applications. Having a programmable
mobile phone at hand to try out the techniques described in this book is actually a great
idea. However, the details of mobile application development vary considerably across
platforms, so we defer those details to each platform’s developer documentation.

This book consists of three parts and several appendices. Part I gives an introduction to the
3D graphics concepts that are needed to understand OpenGL ES and M3G, which are then
covered in Parts II and III, respectively. The use of each API is demonstrated with hands-on
code examples. The appendices provide additional information and optimization tips for
both C/C++ and Java developers as well as a glossary of acronyms and terms used in this
book. There is also a companion web site, www.graphicsformasses.com, hosting
code examples, errata, and links to other online resources.

A more comprehensive treatment of 3D graphics, such as Real-Time Rendering by Tomas
Akenine-Möller and Eric Haines [AMH02], is recommended for readers new to computer
graphics. The “OpenGL Red Book” [SWN05] is a traditional OpenGL beginner’s guide,
while a book by McReynolds and Blythe [MB05] collects more advanced OpenGL tips in
one place. Those unfamiliar with programming in mobile Java may find Beginning J2ME:
From Novice to Professional by Sing Li and Jonathan Knudsen [LK05] useful.

S E C T I O N 1 . 2 GRAPHICS ON HANDHELD DEVICES 3

1.1.1 TYPOGRAPHIC CONVENTIONS

Alongside the basic text, there are specific tips for achieving good performance and
avoiding common pitfalls. These hints are called performance tips and pitfalls, respectively.
An example of each follows:

Performance tip: Enabling the optimization flag in the compiler makes your appli-
cation run faster.

Pitfall: Premature optimization is the root of all evil.

Code snippets and class, token, and function names are shown in typewriter typeface
like this:

glPointSize(32);
glEnable(GL_POINT_SPRITE_OES);
glTexEnvi(GL_POINT_SPRITE_OES, GL_COORD_REPLACE_OES, GL_TRUE);
glDrawArrays(GL_POINTS, 0, 1);

When API functions are introduced, they are marked like this:

void function(int parameter).

Any later references to the function or parameter in the text are also similarly
emphasized.

1.2 GRAPHICS ON HANDHELD DEVICES

The very first mobile phones were heavy bricks with separate handsets; a few examples
can be seen in Figure 1.1. They were designed to be lugged around rather than carried in

F igure 1.1: The evolution of mobile phones from the early car phones on the left to the multimedia computer on the right
spans roughly two decades. From the left: Mobira Talkman, Nokia R72, Mobira Cityman, Nokia 3410 (the first GSM phone
with a 3D graphics engine), Nokia 6630 (the first phone to support both OpenGL ES and M3G), and Nokia N93 (the first phone
with hardware acceleration for both APIs). Images Copyright c© 2007 Nokia Corporation.

4 INTRODUCTION C H A P T E R 1

a pocket, and they operated using analog radio networks. Toward the late 1980s and early
1990s, mobile phones started to become truly portable rather than just movable. By then
the phones were pocket-sized, but still only used for talking.

Eventually, features such as address books, alarm clocks, and text messaging started to
appear. The early alphanumeric displays evolved into dot matrices, and simple games,
such as the Snake available in many Nokia phones, arrived. Calendars and e-mail applica-
tions quickly followed. Since the late 1990s, the mobile phone feature palette has exploded
with FM radios, color displays, cameras, music players, web browsers, and GPS receivers.
The displays continue to improve with more colors and higher resolutions, memory is
installed by the gigabyte for storing increasing amounts of data, and ever more process-
ing power is available to run a plethora of applications.

1.2.1 DEVICE CATEGORIES

Mobile phones today can be grouped roughly into three categories (see Figure 1.2): basic
phones, the more advanced feature phones, and the high-end smart phones. There is sig-
nificant variance within each category, but the classification helps imagine what kind of
graphics applications can be expected in each. The evolution of mobile phones is rapid—
today’s smart phones are tomorrow’s feature phones. Features we now expect only in the
most expensive high-end devices will be found in the mass market in just a few years’
time.

The basic phone category is currently not very interesting from the point of view of graph-
ics programming: basic phones have closed environments, usually with proprietary oper-
ating systems, and new applications can be developed only in close association with the
maker of the device. Basic phones are very limited in terms of their processing power and
both the physical screen size and the display resolution. This class of phones does not
have graphics hardware, and while software-based 3D solutions can be implemented, the
limited CPU performance allows only the simplest of 3D applications.

Smart
phones

Feature
phones

Basic phones

F igure 1.2: Three phone categories. Smart phones are more powerful than feature phones or basic
phones, but there are more basic phones than either feature phones or smart phones.

S E C T I O N 1 . 2 GRAPHICS ON HANDHELD DEVICES 5

The second category, on the other hand, is very interesting for graphics applications.
Feature phones represent the bulk of the market in developed countries, and most of them
incorporate mobile Java. Hundreds of different Java-enabled phone models are manufac-
tured, and every year hundreds of millions of handsets are sold. Mobile Java makes it
possible to develop applications for that entire volume of devices through a fairly uni-
form programming platform. It offers sufficient programming interfaces for most multi-
media needs, 3D graphics included; the Mobile 3D Graphics API for Java ME (M3G) is
one of the main topics in this book. The Java phones also span the largest range in terms
of performance and feature differences—while the theory is “write once, run anywhere,”
in practice a lot of time is spent managing tens or even hundreds of different application
configurations for different devices, prompting some to re-express the theory as “write
once, debug everywhere.”

The Qualcomm BREW platform1 can be seen as a subset of mid-range devices that
allow installation of native applications, written in C or C++. The security concerns
of native applications are addressed through mandatory certification of developers and
applications. BREW provides 3D graphics through OpenGL ES. Many BREW devices also
support Java and M3G.

The top category in our classification is the high-end smart phone. The logical conclu-
sion to the current smart phone evolution seems to be that these devices evolve into true
mobile computers. Already today, the key features of the category include large, sharp, and
vivid color displays, powerful processors, plenty of memory, and full-blown multimedia
capabilities, not to mention the inherent network connectivity. Some of the latest devices
also incorporate dedicated 3D graphics hardware. The operating systems (OSes), such
as Symbian, Linux, and Windows Mobile, support the installation of third-party native
applications. Java is also featured on practically all smart phones, and both OpenGL ES
and M3G are typically available for 3D content.

1.2.2 DISPLAY TECHNOLOGY

The evolution of mobile phones coincides with the evolution of digital photography. Digi-
tal cameras started the demand for small, cost-efficient, low-power, high-quality displays.
Mobile phones were able to leverage that demand, and soon small-display technology was
being driven by mobile phones—and, eventually, by mobile phones incorporating digi-
tal cameras. Suddenly the world’s largest mobile phone manufacturer is also the world’s
largest camera manufacturer.

Apart from the extreme low end, all mobile phones today have color displays. In the
mid-range, resolutions are around one or two hundred pixels per side, with 16 or 18
bits of color depth, yielding 65K or 262K unique colors. High-end devices pack screens
from QVGA (320 × 240 pixels) upward with good contrast, rapid refresh rates, and

1 brew.qualcomm.com/brew/en/

6 INTRODUCTION C H A P T E R 1

24 bits becoming the norm in color depth. Although there is room for improvement in
brightness, color gamut, and field of view, among other things, it is safe to assume that
display quality will not be the main obstacle for interactive 3D graphics on any recent
feature phone or smart phone.

The main limitation of mobile displays is clearly their small physical size. A 50mm screen
will never provide a truly immersive experience, even though the short viewing distance
compensates for the size to some extent. For high-end console type of gaming, the most
promising new development is perhaps the TV-out interface, already included in some
high-end devices. A phone connected to a high-definition display has the potential to
deliver the same entertainment experience as a dedicated games console. Near-eye dis-
plays, also known as data goggles, may one day allow as wide a viewing angle as the human
eye can handle, while embedded video projectors and foldable displays may become viable
alternatives to TV-out. Finally, autostereoscopic displays that provide different images to
both eyes may yield a more immersive 3D experience than is possible using only a single
image.

As with most aspects of mobile phones, there is a lot of variation in display proper-
ties. Application developers will have to live with a variety of display technologies, sizes,
orientations, and resolutions—much more so than in the desktop environment.

1.2.3 PROCESSING POWER

Mobile phones run on battery power. While the processing power of integrated circuits
may continue to increase in line with Moore’s law [Moo65], roughly 40–60% per year,
this is certainly not true of battery capacity. Battery technology progresses at a much more
modest rate, with the energy capacity of batteries increasing perhaps 10% per year at best.
In ten years’ time, processing power may well increase twenty times more than battery
capacity.

Needless to say, mobile devices need to conserve battery power as much as possible in
order to provide sufficient operating times. Another reason to keep the power consump-
tion low is heat dissipation: mobile devices are small, so there is very little surface area
available for transferring the heat generated in the circuits out of the device, and very few
users appreciate their devices heating noticeably. There is a potential ray of hope, though,
in the form of Gene’s law. It states that the power usage, and therefore heat dissipation, of
integrated circuits drops in half every 18 months. This effect has made it possible to build
ever smaller and faster circuits.

As shown in Figure 1.3, mobile phones typically have one or two processors. Each pro-
cessor incorporates an embedded CPU, a digital signal processor (DSP), and perhaps
some dedicated hardware for audio, imaging, graphics, and other tasks. The baseband
processor takes care of the fundamental real-time operations of the device, such as pro-
cessing the speech and radio signals. In basic phones and feature phones, the baseband

S E C T I O N 1 . 2 GRAPHICS ON HANDHELD DEVICES 7

Baseband
Processor

CPU DSP

Application
Processor

CPU DSP

GPU

Memory

IVA

Baseband
Processor

CPU DSP

Memory

IVA

F igure 1.3: System architecture of a typical high-end smart phone (left) and a feature phone (right)
in late 2007. Note that feature phones often include an Imaging and Video Accelerator (IVA), whereas
a Graphics Processing Unit (GPU) is still relatively uncommon even in the smart phone segment.

processor also runs the operating system, applications, and the user interface—but of
course at a lower priority. Smart phones usually have a separate application processor for
these secondary purposes. To anyone coming from outside the mobile phone industry it
may seem odd to call all this complex functionality “secondary.” Indeed, the way forward
is to make the application processor the core of the system with the modem becoming
a peripheral.

The presence or absence of an application processor does not make much difference
to the developer, though: exactly one CPU is available for programming in either case,
and dedicated hardware accelerators may be present whether or not there is a separate
application processor. The phone vendors also tend to be secretive about their hardware
designs, so merely finding out what hardware is included in a particular device may be
next to impossible. As a rule, the presence or absence of any hardware beyond the CPU
that is running the application code can only be inferred through variation in perfor-
mance. For example, a dual-chip device is likely to perform better for web browsing,
multiplayer gaming, and other tasks that involve network access and heavy processing
at the same time. In the rest of this book, we will not differentiate between baseband and
application processors, but will simply refer to them collectively as “the processor” or
“the CPU.”

A mainstream mobile phone can be expected to have a 32-bit reduced instruction set
(RISC) CPU, such as an ARM9. Some very high-end devices may also have a hardware
floating-point unit (FPU). Clock speeds are reaching into half a gigahertz in the high end,
whereas mid-range devices may still be clocked at barely 100MHz. There are also large
variations in memory bus bandwidths, cache memories, and the presence or absence of
hardware accelerators, creating a wide array of different performance profiles.

8 INTRODUCTION C H A P T E R 1

1.2.4 GRAPHICS HARDWARE

At the time of writing, the first generation of mobile phones with 3D graphics accelerators
(GPUs) is available on the market. Currently, most of the devices incorporating graphics
processors are high-end smart phones, but some feature phones with graphics hardware
have also been released. It is reasonable to expect that graphics acceleration will become
more common in that segment as well. One reason for this is that using a dedicated graph-
ics processor is more power-efficient than doing the same effects on a general-purpose
CPU: the CPU may require a clock speed up to 20 times higher than a dedicated chip
to achieve the same rendering performance. For example, a typical hardware-accelerated
mobile graphics unit can rasterize one or two bilinear texture fetches in one cycle, whereas
a software implementation takes easily more than 20 cycles.

Figure 1.4 shows some of the first-generation mobile graphics hardware in its develop-
ment stage. When designing mobile graphics hardware, the power consumption or power
efficiency is the main driving factor. A well-designed chip does not use a lot of power inter-
nally, but power is also consumed when accessing external memory—such as the frame
buffer—outside of the graphics core. For this reason, chip designs that cache graphics
resources on the GPU, or store the frame buffer on the same chip and thus minimize traf-
fic to and from external memory, are more interesting for mobile devices than for desktop
graphics cards.

F igure 1.4: Early mobile graphics hardware prototype. Image copyright c© Texas Instruments.

S E C T I O N 1 . 2 GRAPHICS ON HANDHELD DEVICES 9

The graphics processor is only a small part of a multi-purpose consumer device which is
sold as a complete package. Not all consumers take full advantage of the features made
possible by the graphics hardware (e.g., high-end gaming, 3D navigation or fancy user
interfaces), so they are not willing to pay a premium for it. In order to keep the cost of the
device appealing to a variety of customers, the graphics core must be cheap to manufac-
ture, i.e., it must have a small silicon area.

Graphics hardware for mobile devices cannot take the same approach as their desktop
counterparts, sacrificing silicon area and power consumption for high performance. The
design constraints are much tighter: the clock speeds and memory bandwidths are lower,
and different levels of acceleration are required by different types of devices. For instance,
many mobile GPUs only implement the rasterization stage of the rendering pipeline in
hardware, leaving the transformation and lighting operations to be executed in software.

Rather than looking at raw performance, a much better metric is performance per
milliwatt. High-end mobile GPUs in phones currently available in the market consume
some hundreds of milliwatts of power at full speed, and can reach triangle throughputs
of several million triangles per second, and pixel fill rates of hundreds of megapixels per
second. Next-generation mobile GPUs are expected to have relative performance an order
of magnitude higher.

1.2.5 EXECUTION ENVIRONMENTS

In the desktop arena, there are only three major families of operating systems: Windows,
Linux, and Mac OS. Even though they have various differences in their design, and can
seem very different from each other on the surface, the basic low-level idioms for writing
programs are relatively similar. In the mobile space, there are dozens of different operating
systems, and they each have their own quirks. As an example, some OSes do not support
writable static data, i.e., static variables inside functions, global variables, or nonconstant
global arrays. Other operating systems may lack a traditional file system. This means that
things often taken for granted cannot be used in a portable fashion.

Open development environments

Traditionally all the embedded operating systems were closed, meaning that only the plat-
form providers could write and install applications on them. The basic phones are appli-
ances dedicated to a single purpose: making phone calls.

There are several reasons to keep platforms closed. If you allow third parties to install
applications on your device after the purchase, the requirements for system stability are
much higher. There are also significant costs related to software development, e.g., docu-
mentation, supporting libraries, and developer relations. Additionally, you have less free-
dom to change your implementations once other parties rely on your legacy features.
Security is also a critical aspect. If applications cannot be installed, neither can malware,

10 INTRODUCTION C H A P T E R 1

e.g., viruses that could erase or forward your private information such as the address book
and calendar entries, or call on your behalf to a $9.95-per-minute phone number.

However, modern smart phones are not any longer dedicated appliances, they are true
multimedia computers. Providing all applications is a big and expensive engineering
task for a single manufacturer. When a platform is opened, a much larger number of
engineers, both professionals and hobbyists, can develop key applications that can both
create additional revenue and make the device on the whole a more attractive offer-
ing. Opening up the platform also opens possibilities for innovating completely new
types of applications. On the other hand, there may be financial reasons for the exact
opposite behavior: if one party can control which applications and functionalities are
available, and is able to charge for these, it may be tempted to keep an otherwise open
platform closed.

Nevertheless, the majority of mobile phones sold today have an open development envi-
ronment. In this book, we employ the term open platform rather loosely to cover all devices
where it is possible to program and install your own applications. Our definition also
includes devices that require additional certifications from the phone manufacturer or
the operator. Examples of open platforms include Java, BREW/WIPI, Linux, Palm OS,
Symbian OS, and Windows Mobile.

A native application is one that has been compiled into the machine code of the target
processor. We use the designation open native platform for devices that allow installing
and executing native applications. For example, S60 devices are considered native whereas
Java-only phones are not. Some 10–15% of all phones sold worldwide in 2006 fall into this
category, roughly half of them being S60 and the other half BREW/WIPI phones.

Native applications

In basic phones and feature phones, the only way to integrate native binary applications
is to place them into the firmware when the phone is manufactured. Smart phones, by
contrast, allow installing and executing native binary applications. A key advantage for
such applications is that there are few or no layers of abstraction between the running code
and the hardware. They also can have access to all device capabilities and the functionality
provided by system libraries. Therefore these applications can get all the performance out
of the hardware.

This comes at the cost of portability. Each platform has its own quirks that the program-
mers have to become familiar with. There are several initiatives underway that aim to
standardize a common native programming environment across the various operating
systems, e.g., the OpenKODE standard2 from the Khronos Group.

With regards to the 3D graphics capability, most mobile operating system vendors have
selected OpenGL ES as their native 3D programming API. There still exist a few

2 www.khronos.org/openkode

S E C T I O N 1 . 2 GRAPHICS ON HANDHELD DEVICES 11

proprietary solutions, such as Direct3D Mobile on Windows Mobile, and the Mascot
Capsule API in the Japanese market. Regardless, it seems highly unlikely that any new
native 3D rendering APIs would emerge in the future—the graphics API wars waged in the
desktop arena in the mid-1990s are not to be re-fought in the embedded world. This fur-
thers the portability of the core graphics part of an application. Even if OpenGL ES is not
integrated with the operating system out of the box, software-based OpenGL ES imple-
mentations are available which can be either directly linked to applications or installed
afterward as a system-level library.

Mobile Java

Nearly all mobile phones sold in developed countries today are equipped with Java Micro
Edition,3 making it by far the most widely deployed application platform in the world.
Java ME has earned its position because of its intrinsic security, fairly open and vendor-
neutral status, and its familiarity to millions of developers. It also provides better produc-
tivity for programmers compared to C/C++, especially considering the many different
flavors of C/C++ that are used on mobile devices. Finally, the fact that Java can abstract
over substantially different hardware and software configurations is crucial in the mobile
device market where no single vendor or operating system has a dominating position.
Most manufacturers are hedging their bets between their proprietary software platforms
and a number of commercial and open-source options, but Java developers can be bliss-
fully unaware of which operating system each particular device is using. Practically all
mobile Java platforms provide the same 3D graphics solution: the M3G API, described in
this book.

The Java platform is a perfect match for an otherwise closed system. It gives security,
stability, and portability almost for free, thanks to its virtual machine design, while doc-
umentation and support costs are effectively spread among all companies that are partic-
ipating in Java standardization, i.e., the Java Community Process, or JCP, and shipping
Java-enabled products.

Even for a platform that does allow native applications, it makes a lot of sense to make
Java available as a complementary option. Java gives access to a vast pool of applications,
developers, tools, and code that would otherwise not be available for that platform. Also,
developers can then choose between the ease of development afforded by Java, and the
more powerful native platform features available through C/C++.

Of course, the secure and robust virtual machine architecture of Java has its price: reduced
application performance and limited access to platform capabilities. Isolating applications
from the underlying software and hardware blocks access to native system libraries and
rules out any low-level optimizations. It is not just a myth that Java code is slower than
C/C++, particularly not on mobile devices. The Java performance issues are covered more
thoroughly in Appendix B.

3 java.sun.com/javame

12 INTRODUCTION C H A P T E R 1

1.3 MOBILE GRAPHICS STANDARDS

The mobile graphics revolution started small. The first phones with an embedded 3D
engine were shipped by J-Phone, a Japanese carrier, in 2001. The graphics engine was an
early version of the Mascot Capsule engine from HI Corporation. Its main purpose at
the time was to display simple animated characters. Therefore many common 3D graph-
ics features such as perspective projection, smooth shading, and blending were omitted
altogether.

The first mobile phone to support 3D graphics outside of Japan was the Nokia 3410,
first shipped in Europe in 2002 (see Figure 1.1). Unlike the Japanese phones, it still had a
monochrome screen—with a mere 96 by 65 pixels of resolution—but it did incorporate
all the essential 3D rendering features; internally, the graphics engine in the 3410 was
very close to OpenGL ES 1.0, despite preceding it by a few years. A lightweight animation
engine was also built on top of it, with an authoring tool chain for Autodesk 3ds Max.
The phone shipped with animated 3D text strings, downloadable screensaver animations,
and a built-in Java game that used simple 3D graphics. The application that allowed the
users to input a text string, such as their own name or their sweetheart’s name, and select
one of the predefined animations to spin the 3D extruded letters around proved quite
popular. On the other hand, downloading of artist-created screensaver animations was
less popular.

Other early 3D graphics engines included Swerve from Superscape, ExEn (Execution
Engine) from InFusio, X-Forge from Fathammer, and mophun from Synergenix. Their
common denominator was that they were not merely hardware abstraction layers.
Instead, they were middleware and game engine solutions incorporating high-level
features such as animation and binary file formats, and in many cases also input
handling and sound. All the solutions were based on software rendering, so there was
no need to standardize hardware functionality, and features outside of the traditional
OpenGL rendering model could easily be incorporated. However, in the absence of a
unified platform, gaining enough market share to sustain a business proved difficult for
most contenders.

1.3.1 FIGHTING THE FRAGMENTATION

A multitude of different approaches to the same technical problem slows down the devel-
opment of a software application market. For example, a large variety of proprietary con-
tent formats and tools increases the cost of content creation and distribution. To make
creating interesting content sensible for content developers, the market needs to be suffi-
ciently robust and large. This is not so much an issue with pre-installed content, such as
built-in games on handsets, but it is crucial for third-party developers.

S E C T I O N 1 . 3 MOBILE GRAPHICS STANDARDS 13

There are strong market forces that encourage fragmentation. For example, the mobile
phone manufacturers want their phones to differentiate from their competition.
Operators want to distinguish themselves from one another by offering differing ser-
vices. And the dozens of companies that create the components that form a mobile phone,
i.e., the hardware and software vendors, all want to compete by providing distinct
features. In other words, there is a constant drive for new features. When you want the
engineering problems related to a new feature solved, you will not normally wait for a
standard to develop. As a result, any new functionality will usually be introduced as a
number of proprietary solutions: similar, but developed from different angles, and more
or less incompatible with each other.

After the first wave, a natural next step in evolution is a de facto standard—the fittest
solution will rise above the others and begin to dominate the marketplace. Alterna-
tively, lacking a single leader, the industry players may choose to unite and develop a
joint standard. The required committee work may take a while longer, but, with sufficient
support from the major players, has the potential to become a win-win scenario for every-
one involved.

For the third-party application developer, the size—or market potential—of a platform is
important, but equally important is the ease of developing for the platform. Portability of
code is a major part of that. It can be achieved at the binary level, with the same application
executable running on all devices; or at the source code level, where the same code can
be compiled, perhaps with small changes, to all devices. Standard APIs also bring other
benefits, such as better documentation and easier transfer of programming skills. Finally,
they act as a concrete target for hardware manufacturers as to which features should be
supported in their hardware.

In 2002, the Khronos Group, a standardization consortium for specifying and pro-
moting mobile multimedia APIs, created a steering committee for defining a subset of
OpenGL suitable for embedded devices. The following companies were represented in
the first meeting: 3d4W, 3Dlabs, ARM, ATI, Imagination Technologies, Motorola, Nokia,
Seaweed, SGI, and Texas Instruments. Concurrently with this, a Nokia-led effort to stan-
dardize a high-level 3D graphics API for Java ME was launched under the auspices of the
Java Community Process (JCP). It was assigned the Java Specification Request number
184 (hence the moniker “JSR 184”) but the standard has become better known as M3G.
The Expert Group of JSR 184 was a mixture of key mobile industry players including
Nokia, Motorola, Vodafone, and ARM, as well as smaller companies specializing in 3D
graphics and games such as Hybrid Graphics, HI Corporation, Superscape, and Sumea.
The two standards progressed side-by-side, influencing each other as there were several
people actively contributing to both. In the fall of 2003 they were both ratified within a
few months of each other, and OpenGL ES 1.0 and M3G 1.0 were born. The first imple-
mentations in real handheld devices began shipping about a year later.

14 INTRODUCTION C H A P T E R 1

F igure 1.5: Uses of OpenGL ES in the Nokia N95 multimedia computer. On the left the multimedia menu and the mapping
application of Nokia N95; on the right, a mobile game. Images Copyright c© Nokia. (See the color plate.)

Today, you can get an overview about the market status by looking at the result databases
of the different mobile graphics benchmarks: JBenchmark4 (Figure 1.12), GLBenchmark5

(Figure 1.6), and the various Futuremark benchmarks6 (Figure 1.9). Devices support-
ing M3G are available from all major handset vendors, and OpenGL ES 1.1 hardware is
being supplied to them by several companies, e.g., AMD, ARM, NVIDIA, and Imagina-
tion Technologies (PowerVR). Practical implementations vary from software renderers
on ARM7 processors to high-end GPUs. The initial focus of mobile 3D graphics has also
broadened from games and screen savers; it is now finding its way to user interfaces (see
Figures 1.5, 1.7, and 1.8), and is available for the visualization needs of all applications.

The emergence of open standards shows that healthy competition should occur over
implementation—quality, performance, cost, and power consumption—but not func-
tionality that causes fragmentation.

1.3.2 DESIGN PRINCIPLES

The planning for the mobile 3D graphics standards was based on the background outlined
earlier in this chapter: the capabilities of mobile devices, the available software platforms,
and the need to create an interesting, unified market for both content developers and
hardware vendors. It was clear from the start that a unified solution that caters for both
Java and native applications was needed. A number of design principles, outlined in the
following, were needed to guide the work. For a more in-depth exposition, see the article
by Pulli et al. [PARV05].

4 www.jbenchmark.com

5 www.glbenchmark.com

6 www.futuremark.com

S E C T I O N 1 . 3 MOBILE GRAPHICS STANDARDS 15

Performance is crucial on devices with limited computation resources. To allow all of
the processing power to be extracted, the APIs were designed with performance in
mind. In practice, this means minimizing the overhead that an application would have
to pay for using a standard API instead of a proprietary solution.

F igure 1.6: Screen shot from the GLBenchmark benchmarking suite for OpenGL ES. Image copyright c© Kishonti Infor-
matics LP. (See the color plate.)

F igure 1.7: More 3D user interface examples. Images copyright c© Acrodea. (See the color plate.)

16 INTRODUCTION C H A P T E R 1

F igure 1.8: 3D user interface examples. Images copyright c© TAT. (See the color plate.)

F igure 1.9: A VGA resolution screen shot from 3DMark Mobile 06, an OpenGL ES benchmark program. Image copyright
c© Futuremark. (See the color plate.)

S E C T I O N 1 . 3 MOBILE GRAPHICS STANDARDS 17

Low complexity as a requirement stems from the stringent silicon area and ROM
footprint budgets of mobile phones. To satisfy this goal, the engines underlying the
OpenGL ES and M3G APIs were required to be implementable, in software, in under
50kB and 150kB, respectively. The key tools for reaching these targets were removal of
redundant and seldom-used features.

A rich feature set should not be compromised even when aiming for compact APIs. As
a guideline, features that would be very difficult to replicate in application code—the
latter parts of the graphics pipeline, such as blending and texture mapping, fall into
this category—should be adopted as fully as feasible, whereas front-end features such
as spline evaluation or texture coordinate generation can be left for the applications to
implement.

Small applications are much more important on mobile devices than on the desktop.
Applications are often delivered over relatively slow over-the-air connections, with the
users paying by the kilobyte, and stored in small on-device memories. This means that
the 3D content has to be delivered efficiently, preferably in a compressed binary format.
Support of compact geometry formats (such as using bytes or shorts for coordinates,
instead of floats) helps in reducing the RAM consumption. Finally, it makes sense for
the API to incorporate functionality that is common to many applications, thus saving
the code space that would otherwise be required to duplicate those features in each
application.

Hardware-friendly features and a clear path for hardware evolution were among the
most important design goals. Adopting the familiar OpenGL rendering model as the
base technology enabled the design of dedicated mobile graphics hardware for mass
markets.

Productivity is especially important for mobile developers, as the development times
of mobile games are typically short compared to desktop. M3G is designed especially
to have a good match to existing content creation tools and to support concurrent
development of application code and art assets.

Orthogonal feature set means that individual rendering features are not tied to each
other. Feature orthogonality makes the behavior of the graphics engine easier to pre-
dict, as complex interdependencies and side-effects are minimized. This was already
one of the key design criteria for desktop OpenGL.

Extensibility is important for any API that is to be around for several years. The mobile
graphics industry is proceeding rapidly, and there has to be a clearly defined path for
evolution as new features need to be incorporated.

Minimal fragmentation lets content developers work on familiar ground. Therefore,
both OpenGL ES and M3G attempt to strictly mandate features, keeping the number
of optional features as small as possible.

18 INTRODUCTION C H A P T E R 1

F igure 1.10: Demonstrating some of the advanced shading capabilities made possible by OpenGL
ES 2.0. Images copyright c© AMD. (See the color plate.)

1.3.3 OPENGL ES

OpenGL ES is a compact version of the well-known OpenGL graphics standard. It is a
low-level rendering API adapted for embedded systems. The first version, OpenGL ES 1.0,
aimed to provide an extremely compact API without sacrificing features: it had to be
implementable fully in software in under 50kB of code while being well-suited for hard-
ware acceleration. The graphics effects familiar from desktop had to be available on
mobile devices as well.

Later, OpenGL ES 1.1 included more features amenable to hardware acceleration, in
line with the feature set of first-generation mobile 3D graphics chipsets. The latest ver-
sion, OpenGL ES 2.0, provides a completely revamped API, and support for a high-level
shading language (GLSL ES): it replaces several stages of the traditional fixed-function
graphics pipeline with programmable vertex and fragment shaders, and is therefore not
backward-compatible with the 1.x series. The 1.x and 2.x generations of OpenGL ES con-
tinue to coexist, together providing 3D graphics capabilities to the entire range of embed-
ded devices from wristwatches to smart phones, modern games consoles, and beyond. All
OpenGL ES 2.x devices are expected to ship with ES 1.1 drivers. Details of the 2.x stan-
dard are beyond the scope of this book. GLSL ES is closely related to the OpenGL Shading
Language, well described by Rost [Ros04].

A companion API called EGL, described in Chapter 11, handles the integration of
OpenGL ES into the native windowing system of the operating system, as well as man-
aging rendering targets and contexts. Finally, there is a separately specified safety-critical
profile called OpenGL SC, but its markets are mostly outside of consumer devices—for
example, in avionics instrumentation. OpenGL ES bindings are also available for other
languages, such as Java and Python.

S E C T I O N 1 . 3 MOBILE GRAPHICS STANDARDS 19

F igure 1.11: Java games using M3G. Images copyright c© Digital Chocolate. (See the color plate.)

1.3.4 M3G

As the first Java-enabled phones hit the market in 2000 or so, it became evident that the
performance and memory overhead of Java was prohibitive for real-time 3D. Software
rasterizers written in pure Java would run orders of magnitude slower compared to those
implemented in native code, while the power of any graphics hardware would be wasted
on not being able to feed it with triangles fast enough.

Since the overhead of mobile Java was not going to magically vanish, there was a need
for a new standard API that would shift as much processing as possible into native code.
Since the data used by the native code cannot reside in the Java heap, a retained mode API
was deemed more suitable than a direct mapping of OpenGL ES to mobile Java.

M3G is a completely new high-level API that borrows ideas from previous APIs such as
Java 3D and OpenInventor. It consists of nodes that encapsulate 3D graphics elements.
The nodes can be connected to form a scene graph representing the graphics objects and
their relationships. M3G is designed so that it can be efficiently implemented on top of
an OpenGL ES renderer.

Standardized high-level APIs have never been as popular on desktop as low-level ones.
The main reason is that a high-level API is always a compromise. The threshold of writ-
ing a dedicated engine, such as a game engine, on top of a hardware-accelerated low-level
API has been relatively low. However, if developers want to create such an engine using
mobile Java, it has to be implemented completely in Java, incurring a significant perfor-
mance penalty compared to native applications. A standardized high-level API, on the

20 INTRODUCTION C H A P T E R 1

F igure 1.12: Screen shot from the JBenchmark performance benchmarking suite for M3G. Image
copyright c© Kishonti Informatics LP. (See the color plate.)

other hand, can be provided by the device manufacturers, and it can be implemented and
optimized in C/C++ or even assembly language. The native core then only has a thin Java
layer to make the functionality available to Java applications.

Additional features of M3G include extensive support for animation and binary content
files. Any property of any object can be keyframe-animated, and there are special types
of meshes that support skinning (e.g., for character animation), and morphing (e.g., for
facial animation). There is also an associated standardized binary file format that has one-
to-one mapping with the API. This greatly facilitates separation of artistic content from
programmable application logic.

Version 1.1 of M3G was released in mid-2005, with the aim of tightening up the specifi-
cation for better interoperability. As M3G 1.1 does not add any substantial functionality
over the original version, device vendors have been able to upgrade to it pretty quickly.
M3G 1.1 is in fact required by the Mobile Service Architecture standard (JSR 248).

As of this writing, M3G 2.0 is being developed under JSR 297. The new version will make
programmable shaders available on high-end devices, while also expanding the feature set

S E C T I O N 1 . 3 MOBILE GRAPHICS STANDARDS 21

and improving performance on the mass-market devices that do not have programmable
graphics hardware, or any graphics hardware at all.

1.3.5 RELATED STANDARDS

There are several mobile graphics and multimedia standards closely related to OpenGL ES
and M3G. This book concentrates only on graphics APIs, but for sound and multimedia
in general, you can refer to standards such as JSR 135 for Java applications, or the native
standards OpenSL ES, OpenMAX, and OpenKODE from the Khronos Group.

OpenGL ES for Java (JSR 239)

JSR 2397 is a Java Specification Request that aims to expose OpenGL ES and EGL to mobile
Java as directly as possible. Its promise is to provide the full OpenGL ES functionality for
maximum flexibility and performance. The different OpenGL ES versions are presented
as a hierarchy of Java interfaces. The base GL interface is extended with new functions
and tokens in GL10 and GL11, for OpenGL ES versions 1.0 and 1.1, respectively. Several
OpenGL ES extensions are also exposed in the API, so features beyond the core function-
ality can be accessed.

Being a Java API, JSR 239 extends the error handling from native OpenGL ES with addi-
tional exceptions to catch out-of-bounds array accesses and other potential risks to system
security and stability. For example, each draw call is required to check for indices referring
outside the currently enabled vertex arrays.

There are no devices available as of this writing that would include JSR 239. Sony Ericsson
have announced support for it in their latest Java Platform release (JP-8), and the first
conforming phone, the Z750i, is likely to be shipping by the time this book goes to press.
There is also a reference implementation available in the Java Wireless Toolkit from Sun
Microsystems. Finally, in Japan, the DoCoMo Java (DoJa) platform version 5.0 includes
proprietary OpenGL ES bindings.

2D vector graphics

The variety of screen resolutions on mobile devices creates a problem for 2D content.
If graphics are rendered and distributed as bitmaps, chances are that the resolution of
the content is different from the screen resolution of the output device. Resampling the
images to different resolutions often degrades the quality—text especially becomes blurry
and difficult to read. Bitmap graphics also requires significant amounts of memory to
store and a high bandwidth to transmit over a network, and this problem only gets worse
as the display resolutions increase. Scalable 2D vector graphics can address both of these

7 www.jcp.org/en/jsr/detail?id=239

22 INTRODUCTION C H A P T E R 1

problems. If the content is represented as shapes such as curves and polygons instead of
pixels, it can often be encoded more compactly. This way content can also be rendered
to different display resolutions without any loss of quality, and can be displayed as the
content author originally intended.

2D vector graphics has somewhat different requirements from 3D graphics. It is used
for high-quality presentation graphics, and features such as smooth curves, precise rules
for line caps, line joins, and line dashes are much more important than they are for
3D content. Indeed, these features are often only defined in 2D, and they may not have
any meaning in 3D. It is also much easier to implement high-quality anti-aliasing for
2D shapes.

Scalable Vector Graphics (SVG) is a standard defined by the World Wide Web Consor-
tium (W3C).8 It is an XML-based format for describing 2D vector graphics content. SVG
also includes a declarative animation model that can be used, for example, for cartoons
and transition effects. In addition, the content can be represented as a Document Object
Model (DOM), which facilitates dynamic manipulation of the content through native
application code or scripting languages such as JavaScript. The DOM API also allows
applications to register a set of event handlers such as mouseover and click that can
be assigned to any SVG graphical object. As a result, SVG can be used to build dynamic
web sites that behave somewhat like desktop applications.

W3C has also defined mobile subsets of the standard, SVG Tiny and SVG Basic.9 The latter
is targeted for Personal Digital Assistants (PDAs), while the smaller SVG Tiny is aimed
for mobile phones. However, it seems that SVG Basic has not been widely adopted by the
industry, while SVG Tiny is becoming commonplace and is being further developed.

The Khronos Group has defined the OpenVG API for efficient rendering of 2D vector
graphics. OpenVG has similar low-level structure as OpenGL ES, and its main use cases
include 2D user interfaces and implementations of 2D vector graphics engines such as
SVG Tiny and Adobe’s Flash. Whereas most 2D vector graphics engines traditionally exe-
cute on the CPU, OpenVG has been designed for off-loading the rasterization to dedicated
graphics hardware (see Figure 1.13). This was necessary in the mobile space because most
devices have limited CPU resources. The OpenVG rendering primitives were chosen so
that all rendering features of SVG Tiny can be easily implemented using the API. The
basic drawing primitive is a path which can contain both straight line segments as well as
smoothly curving Bézier line segments. The paths can describe arbitrary polygons, which
can be filled with solid colors, color gradients, bitmap images, or even patterns made
of other 2D objects. Recent versions of EGL allow rendering with both OpenGL ES and
OpenVG to the same image, and even allow sharing data such as texture maps across the
different Khronos APIs.

8 www.w3.org/Graphics/SVG/

9 www.w3.org/TR/SVGMobile/

S E C T I O N 1 . 3 MOBILE GRAPHICS STANDARDS 23

Oklahoma

F igure 1.13: The use of vector graphics makes it possible to create scalable, antialiased user interfaces. Hardware-
accelerated OpenVG demonstrations. Images copyright c© AMD.

Various 2D graphics interfaces exist for Java ME. Mobile Information Device Profile
(MIDP), the most common Java profile on mobile phones, offers basic 2D graphics func-
tionality with primitives such as lines, circles, and polygons, as well as bitmap graphics. It
is quite well suited for the needs of simple 2D games and applications.

JSR 226, the scalable 2D vector graphics API for Java,10 was created for more challeng-
ing 2D vector graphics applications. It is compatible with SVG Tiny 1.1, and can render
individual images and graphics elements under the control of a Java application, or sim-
ply used as an “SVG Tiny player.” It also supports the XML/SVG Micro DOM (µDOM)
for manipulating properties of the SVG content via accessor methods and event handlers.
JSR 226 was completed in 2005, and can be found in several phone models from manu-
facturers such as Nokia and Sony Ericsson.

JSR 28711 is a backward-compatible successor to JSR 226. The enhancements of this API
include the new graphics and multimedia features from SVG Tiny 1.2, e.g., opacity, gra-
dients, text wrapping, audio, and video. The new version also allows creating animations
on the fly. The Micro DOM support is extended from the previous version. The API also
includes the necessary framework for processing streamed SVG scenes, and there is an
immediate-mode rendering API that is compatible with OpenVG and designed for high
performance. The standard is expected to be completed by the end of 2007. Based on
historical evidence, the first devices can then be expected in late 2008.

10 www.jcp.org/en/jsr/detail?id=226

11 www.jcp.org/en/jsr/detail?id=287

24 INTRODUCTION C H A P T E R 1

COLLADA

COLLADA, short for COLLAborative Design Activity,12 started as an open-source project
led by Sony, but is nowadays being developed and promoted by the Khronos Group.
COLLADA is an interchange format for 3D content; it is the glue which binds together
digital content creation (DCC) tools and various intermediate processing tools to form
a production pipeline. In other words, COLLADA is a tool for content development, not
for content delivery—the final applications are better served with more compact formats
designed for their particular tasks.

COLLADA can represent pretty much everything in a 3D scene that the content authoring
tools can, including geometry, material and shading properties, physics, and animation,
just to name a few. It also has a mobile profile that corresponds to OpenGL ES 1.x and
M3G 1.x, enabling an easy mapping to the M3G binary file format. One of the latest addi-
tions is COLLADA FX, which allows interchange of complex, multi-pass shader effects.
COLLADA FX allows encapsulation of multiple descriptions of an effect, such as different
levels of detail, or different shading for daytime and nighttime versions.

Exporters for COLLADA are currently available for all major 3D content creation tools,
such as Lightwave, Blender, Maya, Softimage, and 3ds Max. A stand-alone viewer is also
available from Feeling Software. Adobe uses COLLADA as an import format for editing
3D textures, and it has been adopted as a data format for Google Earth and Unreal Engine.
For an in-depth coverage of COLLADA, see the book by Arnaud and Barnes [AB06].

12 www.khronos.org/collada

