
1.1 Introduction 2

1.2 Classes of Computers 5

1.3 Defining Computer Architecture 11

1.4 Trends in Technology 17

1.5 Trends in Power and Energy in Integrated Circuits 21

1.6 Trends in Cost 27

1.7 Dependability 33

1.8 Measuring, Reporting, and Summarizing Performance 36

1.9 Quantitative Principles of Computer Design 44

1.10 Putting It All Together: Performance, Price, and Power 52

1.11 Fallacies and Pitfalls 55

1.12 Concluding Remarks 59

1.13 Historical Perspectives and References 61

Case Studies and Exercises by Diana Franklin 61

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1
Fundamentals of Quantitative

Design and Analysis 1

I think it’s fair to say that personal computers have become the most
empowering tool we’ve ever created. They’re tools of communication,
they’re tools of creativity, and they can be shaped by their user.

Bill Gates, February 24, 2004

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

2 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Computer technology has made incredible progress in the roughly 65 years since
the first general-purpose electronic computer was created. Today, less than $500
will purchase a mobile computer that has more performance, more main memory,
and more disk storage than a computer bought in 1985 for $1 million. This rapid
improvement has come both from advances in the technology used to build com-
puters and from innovations in computer design.

Although technological improvements have been fairly steady, progress aris-
ing from better computer architectures has been much less consistent. During the
first 25 years of electronic computers, both forces made a major contribution,
delivering performance improvement of about 25% per year. The late 1970s saw
the emergence of the microprocessor. The ability of the microprocessor to ride
the improvements in integrated circuit technology led to a higher rate of perfor-
mance improvement—roughly 35% growth per year.

This growth rate, combined with the cost advantages of a mass-produced
microprocessor, led to an increasing fraction of the computer business being
based on microprocessors. In addition, two significant changes in the computer
marketplace made it easier than ever before to succeed commercially with a new
architecture. First, the virtual elimination of assembly language programming
reduced the need for object-code compatibility. Second, the creation of standard-
ized, vendor-independent operating systems, such as UNIX and its clone, Linux,
lowered the cost and risk of bringing out a new architecture.

These changes made it possible to develop successfully a new set of architec-
tures with simpler instructions, called RISC (Reduced Instruction Set Computer)
architectures, in the early 1980s. The RISC-based machines focused the attention
of designers on two critical performance techniques, the exploitation of instruction-
level parallelism (initially through pipelining and later through multiple instruction
issue) and the use of caches (initially in simple forms and later using more sophisti-
cated organizations and optimizations).

The RISC-based computers raised the performance bar, forcing prior archi-
tectures to keep up or disappear. The Digital Equipment Vax could not, and so it
was replaced by a RISC architecture. Intel rose to the challenge, primarily by
translating 80x86 instructions into RISC-like instructions internally, allowing it
to adopt many of the innovations first pioneered in the RISC designs. As transis-
tor counts soared in the late 1990s, the hardware overhead of translating the more
complex x86 architecture became negligible. In low-end applications, such as
cell phones, the cost in power and silicon area of the x86-translation overhead
helped lead to a RISC architecture, ARM, becoming dominant.

Figure 1.1 shows that the combination of architectural and organizational
enhancements led to 17 years of sustained growth in performance at an annual
rate of over 50%—a rate that is unprecedented in the computer industry.

The effect of this dramatic growth rate in the 20th century has been fourfold.
First, it has significantly enhanced the capability available to computer users. For
many applications, the highest-performance microprocessors of today outper-
form the supercomputer of less than 10 years ago.

1.1 Introduction

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.1 Introduction ■ 3

Second, this dramatic improvement in cost-performance leads to new classes
of computers. Personal computers and workstations emerged in the 1980s with
the availability of the microprocessor. The last decade saw the rise of smart cell
phones and tablet computers, which many people are using as their primary com-
puting platforms instead of PCs. These mobile client devices are increasingly
using the Internet to access warehouses containing tens of thousands of servers,
which are being designed as if they were a single gigantic computer.

Third, continuing improvement of semiconductor manufacturing as pre-
dicted by Moore’s law has led to the dominance of microprocessor-based com-
puters across the entire range of computer design. Minicomputers, which were

Figure 1.1 Growth in processor performance since the late 1970s. This chart plots performance relative to the VAX
11/780 as measured by the SPEC benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance
growth was largely technology driven and averaged about 25% per year. The increase in growth to about 52% since
then is attributable to more advanced architectural and organizational ideas. By 2003, this growth led to a difference
in performance of about a factor of 25 versus if we had continued at the 25% rate. Performance for floating-point-ori-
ented calculations has increased even faster. Since 2003, the limits of power and available instruction-level parallel-
ism have slowed uniprocessor performance, to no more than 22% per year, or about 5 times slower than had we
continued at 52% per year. (The fastest SPEC performance since 2007 has had automatic parallelization turned on
with increasing number of cores per chip each year, so uniprocessor speed is harder to gauge. These results are lim-
ited to single-socket systems to reduce the impact of automatic parallelization.) Figure 1.11 on page 24 shows the
improvement in clock rates for these same three eras. Since SPEC has changed over the years, performance of newer
machines is estimated by a scaling factor that relates the performance for two different versions of SPEC (e.g.,
SPEC89, SPEC92, SPEC95, SPEC2000, and SPEC2006).

1

5

9

13
18

24

51

80

117

183

280

481
649

993
1,267

1,779
3,016

4,195
6,043 6,681

7,108

11,865
14,387

19,484
21,871

24,129

1

10

100

1000

10,000

100,000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

P
er

fo
rm

an
ce

 (
vs

. V
A

X
-1

1/
78

0)

25%/year

52%/year

22%/year

 IBM POWERstation 100, 150 MHz

Digital Alphastation 4/266, 266 MHz

Digital Alphastation 5/300, 300 MHz

Digital Alphastation 5/500, 500 MHz
AlphaServer 4000 5/600, 600 MHz 21164

Digital AlphaServer 8400 6/575, 575 MHz 21264
Professional Workstation XP1000, 667 MHz 21264A
Intel VC820 motherboard, 1.0 GHz Pentium III processor

 IBM Power4, 1.3 GHz

 Intel Xeon EE 3.2 GHz
 AMD Athlon, 2.6 GHz

 Intel Core 2 Extreme 2 cores, 2.9 GHz
 Intel Core Duo Extreme 2 cores, 3.0 GHz

 Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
 Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)

 Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)

Intel D850EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology)

1.5, VAX-11/785

 AMD Athlon 64, 2.8 GHz

Digital 3000 AXP/500, 150 MHz

HP 9000/750, 66 MHz

IBM RS6000/540, 30 MHz
MIPS M2000, 25 MHz

MIPS M/120, 16.7 MHz

Sun-4/260, 16.7 MHz

VAX 8700, 22 MHz

AX-11/780, 5 MHz

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

4 ■ Chapter One Fundamentals of Quantitative Design and Analysis

traditionally made from off-the-shelf logic or from gate arrays, were replaced by
servers made using microprocessors. Even mainframe computers and high-
performance supercomputers are all collections of microprocessors.

The hardware innovations above led to a renaissance in computer design,
which emphasized both architectural innovation and efficient use of technology
improvements. This rate of growth has compounded so that by 2003, high-
performance microprocessors were 7.5 times faster than what would have been
obtained by relying solely on technology, including improved circuit design; that
is, 52% per year versus 35% per year.

This hardware renaissance led to the fourth impact, which is on software
development. This 25,000-fold performance improvement since 1978 (see
Figure 1.1) allowed programmers today to trade performance for productivity. In
place of performance-oriented languages like C and C++, much more program-
ming today is done in managed programming languages like Java and C#. More-
over, scripting languages like Python and Ruby, which are even more productive,
are gaining in popularity along with programming frameworks like Ruby on
Rails. To maintain productivity and try to close the performance gap, interpreters
with just-in-time compilers and trace-based compiling are replacing the tradi-
tional compiler and linker of the past. Software deployment is changing as well,
with Software as a Service (SaaS) used over the Internet replacing shrink-
wrapped software that must be installed and run on a local computer.

The nature of applications also changes. Speech, sound, images, and video
are becoming increasingly important, along with predictable response time that is
so critical to the user experience. An inspiring example is Google Goggles. This
application lets you hold up your cell phone to point its camera at an object, and
the image is sent wirelessly over the Internet to a warehouse-scale computer that
recognizes the object and tells you interesting information about it. It might
translate text on the object to another language; read the bar code on a book cover
to tell you if a book is available online and its price; or, if you pan the phone cam-
era, tell you what businesses are nearby along with their websites, phone num-
bers, and directions.

Alas, Figure 1.1 also shows that this 17-year hardware renaissance is over.
Since 2003, single-processor performance improvement has dropped to less than
22% per year due to the twin hurdles of maximum power dissipation of air-
cooled chips and the lack of more instruction-level parallelism to exploit effi-
ciently. Indeed, in 2004 Intel canceled its high-performance uniprocessor projects
and joined others in declaring that the road to higher performance would be via
multiple processors per chip rather than via faster uniprocessors.

This milestone signals a historic switch from relying solely on instruction-
level parallelism (ILP), the primary focus of the first three editions of this book,
to data-level parallelism (DLP) and thread-level parallelism (TLP), which were
featured in the fourth edition and expanded in this edition. This edition also adds
warehouse-scale computers and request-level parallelism (RLP). Whereas
the compiler and hardware conspire to exploit ILP implicitly without the pro-
grammer’s attention, DLP, TLP, and RLP are explicitly parallel, requiring the

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.2 Classes of Computers ■ 5

restructuring of the application so that it can exploit explicit parallelism. In some
instances, this is easy; in many, it is a major new burden for programmers.

This text is about the architectural ideas and accompanying compiler
improvements that made the incredible growth rate possible in the last century,
the reasons for the dramatic change, and the challenges and initial promising
approaches to architectural ideas, compilers, and interpreters for the 21st century.
At the core is a quantitative approach to computer design and analysis that uses
empirical observations of programs, experimentation, and simulation as its tools.
It is this style and approach to computer design that is reflected in this text. The
purpose of this chapter is to lay the quantitative foundation on which the follow-
ing chapters and appendices are based.

This book was written not only to explain this design style but also to stimu-
late you to contribute to this progress. We believe this approach will work for
explicitly parallel computers of the future just as it worked for the implicitly par-
allel computers of the past.

These changes have set the stage for a dramatic change in how we view comput-
ing, computing applications, and the computer markets in this new century. Not
since the creation of the personal computer have we seen such dramatic changes
in the way computers appear and in how they are used. These changes in com-
puter use have led to five different computing markets, each characterized by dif-
ferent applications, requirements, and computing technologies. Figure 1.2
summarizes these mainstream classes of computing environments and their
important characteristics.

Feature
Personal
mobile device
(PMD)

Desktop Server
Clusters/warehouse-
scale computer

Embedded

Price of
system

$100–$1000 $300–$2500 $5000–$10,000,000 $100,000–$200,000,000 $10–$100,000

Price of
micro-
processor

$10–$100 $50–$500 $200–$2000 $50–$250 $0.01–$100

Critical
system
design
issues

Cost, energy,
media
performance,
responsiveness

Price-
performance,
energy,
graphics
performance

Throughput,
availability,
scalability, energy

Price-performance,
throughput, energy
proportionality

Price, energy,
application-specific
performance

Figure 1.2 A summary of the five mainstream computing classes and their system characteristics. Sales in 2010
included about 1.8 billion PMDs (90% cell phones), 350 million desktop PCs, and 20 million servers. The total number
of embedded processors sold was nearly 19 billion. In total, 6.1 billion ARM-technology based chips were shipped in
2010. Note the wide range in system price for servers and embedded systems, which go from USB keys to network
routers. For servers, this range arises from the need for very large-scale multiprocessor systems for high-end
transaction processing.

1.2 Classes of Computers

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

6 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Personal Mobile Device (PMD)

Personal mobile device (PMD) is the term we apply to a collection of wireless
devices with multimedia user interfaces such as cell phones, tablet computers,
and so on. Cost is a prime concern given the consumer price for the whole prod-
uct is a few hundred dollars. Although the emphasis on energy efficiency is fre-
quently driven by the use of batteries, the need to use less expensive packaging—
plastic versus ceramic—and the absence of a fan for cooling also limit total
power consumption. We examine the issue of energy and power in more detail in
Section 1.5. Applications on PMDs are often Web-based and media-oriented, like
the Google Goggles example above. Energy and size requirements lead to use of
Flash memory for storage (Chapter 2) instead of magnetic disks.

Responsiveness and predictability are key characteristics for media applica-
tions. A real-time performance requirement means a segment of the application
has an absolute maximum execution time. For example, in playing a video on a
PMD, the time to process each video frame is limited, since the processor must
accept and process the next frame shortly. In some applications, a more nuanced
requirement exists: the average time for a particular task is constrained as well
as the number of instances when some maximum time is exceeded. Such
approaches—sometimes called soft real-time—arise when it is possible to occa-
sionally miss the time constraint on an event, as long as not too many are missed.
Real-time performance tends to be highly application dependent.

Other key characteristics in many PMD applications are the need to minimize
memory and the need to use energy efficiently. Energy efficiency is driven by
both battery power and heat dissipation. The memory can be a substantial portion
of the system cost, and it is important to optimize memory size in such cases. The
importance of memory size translates to an emphasis on code size, since data size
is dictated by the application.

Desktop Computing

The first, and probably still the largest market in dollar terms, is desktop comput-
ing. Desktop computing spans from low-end netbooks that sell for under $300 to
high-end, heavily configured workstations that may sell for $2500. Since 2008,
more than half of the desktop computers made each year have been battery oper-
ated laptop computers.

Throughout this range in price and capability, the desktop market tends to be
driven to optimize price-performance. This combination of performance (mea-
sured primarily in terms of compute performance and graphics performance) and
price of a system is what matters most to customers in this market, and hence to
computer designers. As a result, the newest, highest-performance microproces-
sors and cost-reduced microprocessors often appear first in desktop systems (see
Section 1.6 for a discussion of the issues affecting the cost of computers).

Desktop computing also tends to be reasonably well characterized in terms of
applications and benchmarking, though the increasing use of Web-centric, inter-
active applications poses new challenges in performance evaluation.

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.2 Classes of Computers ■ 7

Servers

As the shift to desktop computing occurred in the 1980s, the role of servers grew
to provide larger-scale and more reliable file and computing services. Such serv-
ers have become the backbone of large-scale enterprise computing, replacing the
traditional mainframe.

For servers, different characteristics are important. First, availability is criti-
cal. (We discuss availability in Section 1.7.) Consider the servers running ATM
machines for banks or airline reservation systems. Failure of such server systems
is far more catastrophic than failure of a single desktop, since these servers must
operate seven days a week, 24 hours a day. Figure 1.3 estimates revenue costs of
downtime for server applications.

A second key feature of server systems is scalability. Server systems often
grow in response to an increasing demand for the services they support or an
increase in functional requirements. Thus, the ability to scale up the computing
capacity, the memory, the storage, and the I/O bandwidth of a server is crucial.

Finally, servers are designed for efficient throughput. That is, the overall per-
formance of the server—in terms of transactions per minute or Web pages served
per second—is what is crucial. Responsiveness to an individual request remains
important, but overall efficiency and cost-effectiveness, as determined by how
many requests can be handled in a unit time, are the key metrics for most servers.
We return to the issue of assessing performance for different types of computing
environments in Section 1.8.

Application
Cost of downtime

per hour

Annual losses with downtime of

1%
(87.6 hrs/yr)

0.5%
(43.8 hrs/yr)

0.1%
(8.8 hrs/yr)

Brokerage operations $6,450,000 $565,000,000 $283,000,000 $56,500,000

Credit card authorization $2,600,000 $228,000,000 $114,000,000 $22,800,000

Package shipping services $150,000 $13,000,000 $6,600,000 $1,300,000

Home shopping channel $113,000 $9,900,000 $4,900,000 $1,000,000

Catalog sales center $90,000 $7,900,000 $3,900,000 $800,000

Airline reservation center $89,000 $7,900,000 $3,900,000 $800,000

Cellular service activation $41,000 $3,600,000 $1,800,000 $400,000

Online network fees $25,000 $2,200,000 $1,100,000 $200,000

ATM service fees $14,000 $1,200,000 $600,000 $100,000

Figure 1.3 Costs rounded to nearest $100,000 of an unavailable system are shown by analyzing the cost of
downtime (in terms of immediately lost revenue), assuming three different levels of availability and that down-
time is distributed uniformly. These data are from Kembel [2000] and were collected and analyzed by Contingency
Planning Research.

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

8 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Clusters/Warehouse-Scale Computers

The growth of Software as a Service (SaaS) for applications like search, social
networking, video sharing, multiplayer games, online shopping, and so on has led
to the growth of a class of computers called clusters. Clusters are collections of
desktop computers or servers connected by local area networks to act as a single
larger computer. Each node runs its own operating system, and nodes communi-
cate using a networking protocol. The largest of the clusters are called
warehouse-scale computers (WSCs), in that they are designed so that tens of
thousands of servers can act as one. Chapter 6 describes this class of the
extremely large computers.

Price-performance and power are critical to WSCs since they are so large. As
Chapter 6 explains, 80% of the cost of a $90M warehouse is associated with
power and cooling of the computers inside. The computers themselves and net-
working gear cost another $70M and they must be replaced every few years.
When you are buying that much computing, you need to buy wisely, as a 10%
improvement in price-performance means a savings of $7M (10% of $70M).

WSCs are related to servers, in that availability is critical. For example, Ama-
zon.com had $13 billion in sales in the fourth quarter of 2010. As there are about
2200 hours in a quarter, the average revenue per hour was almost $6M. During a
peak hour for Christmas shopping, the potential loss would be many times higher.
As Chapter 6 explains, the difference from servers is that WSCs use redundant
inexpensive components as the building blocks, relying on a software layer to
catch and isolate the many failures that will happen with computing at this scale.
Note that scalability for a WSC is handled by the local area network connecting
the computers and not by integrated computer hardware, as in the case of servers.

Supercomputers are related to WSCs in that they are equally expensive, cost-
ing hundreds of millions of dollars, but supercomputers differ by emphasizing
floating-point performance and by running large, communication-intensive batch
programs that can run for weeks at a time. This tight coupling leads to use of
much faster internal networks. In contrast, WSCs emphasize interactive applica-
tions, large-scale storage, dependability, and high Internet bandwidth.

Embedded Computers

Embedded computers are found in everyday machines; microwaves, washing
machines, most printers, most networking switches, and all cars contain simple
embedded microprocessors.

The processors in a PMD are often considered embedded computers, but we
are keeping them as a separate category because PMDs are platforms that can run
externally developed software and they share many of the characteristics of desk-
top computers. Other embedded devices are more limited in hardware and soft-
ware sophistication. We use the ability to run third-party software as the dividing
line between non-embedded and embedded computers.

Embedded computers have the widest spread of processing power and cost.
They include 8-bit and 16-bit processors that may cost less than a dime, 32-bit

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.2 Classes of Computers ■ 9

microprocessors that execute 100 million instructions per second and cost under
$5, and high-end processors for network switches that cost $100 and can execute
billions of instructions per second. Although the range of computing power in the
embedded computing market is very large, price is a key factor in the design of
computers for this space. Performance requirements do exist, of course, but the
primary goal is often meeting the performance need at a minimum price, rather
than achieving higher performance at a higher price.

Most of this book applies to the design, use, and performance of embedded
processors, whether they are off-the-shelf microprocessors or microprocessor
cores that will be assembled with other special-purpose hardware. Indeed, the
third edition of this book included examples from embedded computing to illus-
trate the ideas in every chapter.

Alas, most readers found these examples unsatisfactory, as the data that drive
the quantitative design and evaluation of other classes of computers have not yet
been extended well to embedded computing (see the challenges with EEMBC,
for example, in Section 1.8). Hence, we are left for now with qualitative descrip-
tions, which do not fit well with the rest of the book. As a result, in this and the
prior edition we consolidated the embedded material into Appendix E. We
believe a separate appendix improves the flow of ideas in the text while allowing
readers to see how the differing requirements affect embedded computing.

Classes of Parallelism and Parallel Architectures

Parallelism at multiple levels is now the driving force of computer design across
all four classes of computers, with energy and cost being the primary constraints.
There are basically two kinds of parallelism in applications:

1. Data-Level Parallelism (DLP) arises because there are many data items that
can be operated on at the same time.

2. Task-Level Parallelism (TLP) arises because tasks of work are created that
can operate independently and largely in parallel.

Computer hardware in turn can exploit these two kinds of application parallelism
in four major ways:

1. Instruction-Level Parallelism exploits data-level parallelism at modest levels
with compiler help using ideas like pipelining and at medium levels using
ideas like speculative execution.

2. Vector Architectures and Graphic Processor Units (GPUs) exploit data-level
parallelism by applying a single instruction to a collection of data in parallel.

3. Thread-Level Parallelism exploits either data-level parallelism or task-level
parallelism in a tightly coupled hardware model that allows for interaction
among parallel threads.

4. Request-Level Parallelism exploits parallelism among largely decoupled
tasks specified by the programmer or the operating system.

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

10 ■ Chapter One Fundamentals of Quantitative Design and Analysis

These four ways for hardware to support the data-level parallelism and
task-level parallelism go back 50 years. When Michael Flynn [1966] studied
the parallel computing efforts in the 1960s, he found a simple classification
whose abbreviations we still use today. He looked at the parallelism in the
instruction and data streams called for by the instructions at the most con-
strained component of the multiprocessor, and placed all computers into one of
four categories:

1. Single instruction stream, single data stream (SISD)—This category is the
uniprocessor. The programmer thinks of it as the standard sequential com-
puter, but it can exploit instruction-level parallelism. Chapter 3 covers SISD
architectures that use ILP techniques such as superscalar and speculative exe-
cution.

2. Single instruction stream, multiple data streams (SIMD)—The same
instruction is executed by multiple processors using different data streams.
SIMD computers exploit data-level parallelism by applying the same
operations to multiple items of data in parallel. Each processor has its own
data memory (hence the MD of SIMD), but there is a single instruction
memory and control processor, which fetches and dispatches instructions.
Chapter 4 covers DLP and three different architectures that exploit it:
vector architectures, multimedia extensions to standard instruction sets,
and GPUs.

3. Multiple instruction streams, single data stream (MISD)—No commercial
multiprocessor of this type has been built to date, but it rounds out this simple
classification.

4. Multiple instruction streams, multiple data streams (MIMD)—Each proces-
sor fetches its own instructions and operates on its own data, and it targets
task-level parallelism. In general, MIMD is more flexible than SIMD and
thus more generally applicable, but it is inherently more expensive than
SIMD. For example, MIMD computers can also exploit data-level parallel-
ism, although the overhead is likely to be higher than would be seen in an
SIMD computer. This overhead means that grain size must be sufficiently
large to exploit the parallelism efficiently. Chapter 5 covers tightly coupled
MIMD architectures, which exploit thread-level parallelism since multiple
cooperating threads operate in parallel. Chapter 6 covers loosely coupled
MIMD architectures—specifically, clusters and warehouse-scale comput-
ers—that exploit request-level parallelism, where many independent tasks
can proceed in parallel naturally with little need for communication or
synchronization.

This taxonomy is a coarse model, as many parallel processors are hybrids of the
SISD, SIMD, and MIMD classes. Nonetheless, it is useful to put a framework on
the design space for the computers we will see in this book.

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.3 Defining Computer Architecture ■ 11

The task the computer designer faces is a complex one: Determine what
attributes are important for a new computer, then design a computer to maximize
performance and energy efficiency while staying within cost, power, and avail-
ability constraints. This task has many aspects, including instruction set design,
functional organization, logic design, and implementation. The implementation
may encompass integrated circuit design, packaging, power, and cooling. Opti-
mizing the design requires familiarity with a very wide range of technologies,
from compilers and operating systems to logic design and packaging.

Several years ago, the term computer architecture often referred only to
instruction set design. Other aspects of computer design were called implementa-
tion, often insinuating that implementation is uninteresting or less challenging.

We believe this view is incorrect. The architect’s or designer’s job is much
more than instruction set design, and the technical hurdles in the other aspects of
the project are likely more challenging than those encountered in instruction set
design. We’ll quickly review instruction set architecture before describing the
larger challenges for the computer architect.

Instruction Set Architecture: The Myopic View of Computer
Architecture

We use the term instruction set architecture (ISA) to refer to the actual programmer-
visible instruction set in this book. The ISA serves as the boundary between the
software and hardware. This quick review of ISA will use examples from 80x86,
ARM, and MIPS to illustrate the seven dimensions of an ISA. Appendices A and
K give more details on the three ISAs.

1. Class of ISA—Nearly all ISAs today are classified as general-purpose register
architectures, where the operands are either registers or memory locations.
The 80x86 has 16 general-purpose registers and 16 that can hold floating-
point data, while MIPS has 32 general-purpose and 32 floating-point registers
(see Figure 1.4). The two popular versions of this class are register-memory
ISAs, such as the 80x86, which can access memory as part of many instruc-
tions, and load-store ISAs, such as ARM and MIPS, which can access mem-
ory only with load or store instructions. All recent ISAs are load-store.

2. Memory addressing—Virtually all desktop and server computers, including
the 80x86, ARM, and MIPS, use byte addressing to access memory operands.
Some architectures, like ARM and MIPS, require that objects must be
aligned. An access to an object of size s bytes at byte address A is aligned if
A mod s = 0. (See Figure A.5 on page A-8.) The 80x86 does not require
alignment, but accesses are generally faster if operands are aligned.

3. Addressing modes—In addition to specifying registers and constant operands,
addressing modes specify the address of a memory object. MIPS addressing

1.3 Defining Computer Architecture

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

12 ■ Chapter One Fundamentals of Quantitative Design and Analysis

modes are Register, Immediate (for constants), and Displacement, where a
constant offset is added to a register to form the memory address. The 80x86
supports those three plus three variations of displacement: no register (abso-
lute), two registers (based indexed with displacement), and two registers
where one register is multiplied by the size of the operand in bytes (based
with scaled index and displacement). It has more like the last three, minus the
displacement field, plus register indirect, indexed, and based with scaled
index. ARM has the three MIPS addressing modes plus PC-relative address-
ing, the sum of two registers, and the sum of two registers where one register
is multiplied by the size of the operand in bytes. It also has autoincrement and
autodecrement addressing, where the calculated address replaces the contents
of one of the registers used in forming the address.

4. Types and sizes of operands—Like most ISAs, 80x86, ARM, and MIPS
support operand sizes of 8-bit (ASCII character), 16-bit (Unicode character
or half word), 32-bit (integer or word), 64-bit (double word or long inte-
ger), and IEEE 754 floating point in 32-bit (single precision) and 64-bit
(double precision). The 80x86 also supports 80-bit floating point (extended
double precision).

5. Operations—The general categories of operations are data transfer, arithme-
tic logical, control (discussed next), and floating point. MIPS is a simple and
easy-to-pipeline instruction set architecture, and it is representative of the RISC
architectures being used in 2011. Figure 1.5 summarizes the MIPS ISA. The
80x86 has a much richer and larger set of operations (see Appendix K).

Name Number Use Preserved across a call?

$zero 0 The constant value 0 N.A.

$at 1 Assembler temporary No

$v0–$v1 2–3 Values for function results and
expression evaluation

No

$a0–$a3 4–7 Arguments No

$t0–$t7 8–15 Temporaries No

$s0–$s7 16–23 Saved temporaries Yes

$t8–$t9 24–25 Temporaries No

$k0–$k1 26–27 Reserved for OS kernel No

$gp 28 Global pointer Yes

$sp 29 Stack pointer Yes

$fp 30 Frame pointer Yes

$ra 31 Return address Yes

Figure 1.4 MIPS registers and usage conventions. In addition to the 32 general-
purpose registers (R0–R31), MIPS has 32 floating-point registers (F0–F31) that can hold
either a 32-bit single-precision number or a 64-bit double-precision number.

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.3 Defining Computer Architecture ■ 13

Instruction type/opcode Instruction meaning

Data transfers Move data between registers and memory, or between the integer and FP or special
registers; only memory address mode is 16-bit displacement + contents of a GPR

LB, LBU, SB Load byte, load byte unsigned, store byte (to/from integer registers)

LH, LHU, SH Load half word, load half word unsigned, store half word (to/from integer registers)

LW, LWU, SW Load word, load word unsigned, store word (to/from integer registers)

LD, SD Load double word, store double word (to/from integer registers)

L.S, L.D, S.S, S.D Load SP float, load DP float, store SP float, store DP float

MFC0, MTC0 Copy from/to GPR to/from a special register

MOV.S, MOV.D Copy one SP or DP FP register to another FP register

MFC1, MTC1 Copy 32 bits to/from FP registers from/to integer registers

Arithmetic/logical Operations on integer or logical data in GPRs; signed arithmetic trap on overflow

DADD, DADDI, DADDU, DADDIU Add, add immediate (all immediates are 16 bits); signed and unsigned

DSUB, DSUBU Subtract, signed and unsigned

DMUL, DMULU, DDIV,
DDIVU, MADD

Multiply and divide, signed and unsigned; multiply-add; all operations take and yield
64-bit values

AND, ANDI And, and immediate

OR, ORI, XOR, XORI Or, or immediate, exclusive or, exclusive or immediate

LUI Load upper immediate; loads bits 32 to 47 of register with immediate, then sign-extends

DSLL, DSRL, DSRA, DSLLV,
DSRLV, DSRAV

Shifts: both immediate (DS__) and variable form (DS__V); shifts are shift left logical,
right logical, right arithmetic

SLT, SLTI, SLTU, SLTIU Set less than, set less than immediate, signed and unsigned

Control Conditional branches and jumps; PC-relative or through register

BEQZ, BNEZ Branch GPRs equal/not equal to zero; 16-bit offset from PC + 4

BEQ, BNE Branch GPR equal/not equal; 16-bit offset from PC + 4

BC1T, BC1F Test comparison bit in the FP status register and branch; 16-bit offset from PC + 4

MOVN, MOVZ Copy GPR to another GPR if third GPR is negative, zero

J, JR Jumps: 26-bit offset from PC + 4 (J) or target in register (JR)

JAL, JALR Jump and link: save PC + 4 in R31, target is PC-relative (JAL) or a register (JALR)

TRAP Transfer to operating system at a vectored address

ERET Return to user code from an exception; restore user mode

Floating point FP operations on DP and SP formats

ADD.D, ADD.S, ADD.PS Add DP, SP numbers, and pairs of SP numbers

SUB.D, SUB.S, SUB.PS Subtract DP, SP numbers, and pairs of SP numbers

MUL.D, MUL.S, MUL.PS Multiply DP, SP floating point, and pairs of SP numbers

MADD.D, MADD.S, MADD.PS Multiply-add DP, SP numbers, and pairs of SP numbers

DIV.D, DIV.S, DIV.PS Divide DP, SP floating point, and pairs of SP numbers

CVT._._ Convert instructions: CVT.x.y converts from type x to type y, where x and y are L
(64-bit integer), W (32-bit integer), D (DP), or S (SP). Both operands are FPRs.

C.__.D, C.__.S DP and SP compares: “__” = LT,GT,LE,GE,EQ,NE; sets bit in FP status register

Figure 1.5 Subset of the instructions in MIPS64. SP = single precision; DP = double precision. Appendix A gives
much more detail on MIPS64. For data, the most significant bit number is 0; least is 63.

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

14 ■ Chapter One Fundamentals of Quantitative Design and Analysis

6. Control flow instructions—Virtually all ISAs, including these three, support
conditional branches, unconditional jumps, procedure calls, and returns. All
three use PC-relative addressing, where the branch address is specified by an
address field that is added to the PC. There are some small differences. MIPS
conditional branches (BE, BNE, etc.) test the contents of registers, while the
80x86 and ARM branches test condition code bits set as side effects of arith-
metic/logic operations. The ARM and MIPS procedure call places the return
address in a register, while the 80x86 call (CALLF) places the return address
on a stack in memory.

7. Encoding an ISA—There are two basic choices on encoding: fixed length and
variable length. All ARM and MIPS instructions are 32 bits long, which sim-
plifies instruction decoding. Figure 1.6 shows the MIPS instruction formats.
The 80x86 encoding is variable length, ranging from 1 to 18 bytes. Variable-
length instructions can take less space than fixed-length instructions, so a
program compiled for the 80x86 is usually smaller than the same program
compiled for MIPS. Note that choices mentioned above will affect how the
instructions are encoded into a binary representation. For example, the num-
ber of registers and the number of addressing modes both have a significant
impact on the size of instructions, as the register field and addressing mode
field can appear many times in a single instruction. (Note that ARM and
MIPS later offered extensions to offer 16-bit length instructions so as to
reduce program size, called Thumb or Thumb-2 and MIPS16, respectively.)

Figure 1.6 MIPS64 instruction set architecture formats. All instructions are 32 bits
long. The R format is for integer register-to-register operations, such as DADDU, DSUBU,
and so on. The I format is for data transfers, branches, and immediate instructions, such
as LD, SD, BEQZ, and DADDIs. The J format is for jumps, the FR format for floating-point
operations, and the FI format for floating-point branches.

Basic instruction formats

R opcode rs rt rd shamt funct

31 026 25 21 20 16 15 11 10 6 5

026 25 21 20 16 15 11 10 6 5

I opcode rs rt immediate

31 26 25 21 20 16 15

J opcode address

31 26 25

Floating-point instruction formats

FR opcode fmt ft fs fd funct

31

26 25 21 20 16 1531

FI opcode fmt ft immediate

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.3 Defining Computer Architecture ■ 15

The other challenges facing the computer architect beyond ISA design are
particularly acute at the present, when the differences among instruction sets are
small and when there are distinct application areas. Therefore, starting with the
last edition, the bulk of instruction set material beyond this quick review is found
in the appendices (see Appendices A and K).

We use a subset of MIPS64 as the example ISA in this book because it is both
the dominant ISA for networking and it is an elegant example of the RISC architec-
tures mentioned earlier, of which ARM (Advanced RISC Machine) is the most
popular example. ARM processors were in 6.1 billion chips shipped in 2010, or
roughly 20 times as many chips that shipped with 80x86 processors.

Genuine Computer Architecture: Designing the Organization
and Hardware to Meet Goals and Functional Requirements

The implementation of a computer has two components: organization and
hardware. The term organization includes the high-level aspects of a computer’s
design, such as the memory system, the memory interconnect, and the design of
the internal processor or CPU (central processing unit—where arithmetic, logic,
branching, and data transfer are implemented). The term microarchitecture is
also used instead of organization. For example, two processors with the same
instruction set architectures but different organizations are the AMD Opteron and
the Intel Core i7. Both processors implement the x86 instruction set, but they
have very different pipeline and cache organizations.

The switch to multiple processors per microprocessor led to the term core to
also be used for processor. Instead of saying multiprocessor microprocessor, the
term multicore has caught on. Given that virtually all chips have multiple proces-
sors, the term central processing unit, or CPU, is fading in popularity.

Hardware refers to the specifics of a computer, including the detailed logic
design and the packaging technology of the computer. Often a line of computers
contains computers with identical instruction set architectures and nearly identical
organizations, but they differ in the detailed hardware implementation. For exam-
ple, the Intel Core i7 (see Chapter 3) and the Intel Xeon 7560 (see Chapter 5) are
nearly identical but offer different clock rates and different memory systems,
making the Xeon 7560 more effective for server computers.

In this book, the word architecture covers all three aspects of computer
design—instruction set architecture, organization or microarchitecture, and
hardware.

Computer architects must design a computer to meet functional requirements
as well as price, power, performance, and availability goals. Figure 1.7 summa-
rizes requirements to consider in designing a new computer. Often, architects
also must determine what the functional requirements are, which can be a major
task. The requirements may be specific features inspired by the market. Applica-
tion software often drives the choice of certain functional requirements by deter-
mining how the computer will be used. If a large body of software exists for a
certain instruction set architecture, the architect may decide that a new computer

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

16 ■ Chapter One Fundamentals of Quantitative Design and Analysis

should implement an existing instruction set. The presence of a large market for a
particular class of applications might encourage the designers to incorporate
requirements that would make the computer competitive in that market. Later
chapters examine many of these requirements and features in depth.

Architects must also be aware of important trends in both the technology and
the use of computers, as such trends affect not only the future cost but also the
longevity of an architecture.

Functional requirements Typical features required or supported

Application area Target of computer

Personal mobile device Real-time performance for a range of tasks, including interactive performance for
graphics, video, and audio; energy efficiency (Ch. 2, 3, 4, 5; App. A)

General-purpose desktop Balanced performance for a range of tasks, including interactive performance for
graphics, video, and audio (Ch. 2, 3, 4, 5; App. A)

Servers Support for databases and transaction processing; enhancements for reliability and
availability; support for scalability (Ch. 2, 5; App. A, D, F)

Clusters/warehouse-scale
computers

Throughput performance for many independent tasks; error correction for
memory; energy proportionality (Ch 2, 6; App. F)

Embedded computing Often requires special support for graphics or video (or other application-specific
extension); power limitations and power control may be required; real-time
constraints (Ch. 2, 3, 5; App. A, E)

Level of software compatibility Determines amount of existing software for computer

At programming language Most flexible for designer; need new compiler (Ch. 3, 5; App. A)

Object code or binary
compatible

Instruction set architecture is completely defined—little flexibility—but no
investment needed in software or porting programs (App. A)

Operating system requirements Necessary features to support chosen OS (Ch. 2; App. B)

Size of address space Very important feature (Ch. 2); may limit applications

Memory management Required for modern OS; may be paged or segmented (Ch. 2)

Protection Different OS and application needs: page vs. segment; virtual machines (Ch. 2)

Standards Certain standards may be required by marketplace

Floating point Format and arithmetic: IEEE 754 standard (App. J), special arithmetic for graphics
or signal processing

I/O interfaces For I/O devices: Serial ATA, Serial Attached SCSI, PCI Express (App. D, F)

Operating systems UNIX, Windows, Linux, CISCO IOS

Networks Support required for different networks: Ethernet, Infiniband (App. F)

Programming languages Languages (ANSI C, C++, Java, Fortran) affect instruction set (App. A)

Figure 1.7 Summary of some of the most important functional requirements an architect faces. The left-hand
column describes the class of requirement, while the right-hand column gives specific examples. The right-hand
column also contains references to chapters and appendices that deal with the specific issues.

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.4 Trends in Technology ■ 17

If an instruction set architecture is to be successful, it must be designed to survive
rapid changes in computer technology. After all, a successful new instruction set
architecture may last decades—for example, the core of the IBM mainframe has
been in use for nearly 50 years. An architect must plan for technology changes
that can increase the lifetime of a successful computer.

To plan for the evolution of a computer, the designer must be aware of rapid
changes in implementation technology. Five implementation technologies, which
change at a dramatic pace, are critical to modern implementations:

■ Integrated circuit logic technology—Transistor density increases by about
35% per year, quadrupling somewhat over four years. Increases in die size
are less predictable and slower, ranging from 10% to 20% per year. The com-
bined effect is a growth rate in transistor count on a chip of about 40% to 55%
per year, or doubling every 18 to 24 months. This trend is popularly known as
Moore’s law. Device speed scales more slowly, as we discuss below.

■ Semiconductor DRAM (dynamic random-access memory)—Now that most
DRAM chips are primarily shipped in DIMM modules, it is harder to track
chip capacity, as DRAM manufacturers typically offer several capacity prod-
ucts at the same time to match DIMM capacity. Capacity per DRAM chip has
increased by about 25% to 40% per year recently, doubling roughly every
two to three years. This technology is the foundation of main memory, and
we discuss it in Chapter 2. Note that the rate of improvement has continued to
slow over the editions of this book, as Figure 1.8 shows. There is even con-
cern as whether the growth rate will stop in the middle of this decade due to
the increasing difficulty of efficiently manufacturing even smaller DRAM
cells [Kim 2005]. Chapter 2 mentions several other technologies that may
replace DRAM if it hits a capacity wall.

CA:AQA Edition Year
DRAM growth
rate

Characterization of impact
on DRAM capacity

1 1990 60%/year Quadrupling every 3 years

2 1996 60%/year Quadrupling every 3 years

3 2003 40%–60%/year Quadrupling every 3 to 4 years

4 2007 40%/year Doubling every 2 years

5 2011 25%–40%/year Doubling every 2 to 3 years

Figure 1.8 Change in rate of improvement in DRAM capacity over time. The first two
editions even called this rate the DRAM Growth Rule of Thumb, since it had been so
dependable since 1977 with the 16-kilobit DRAM through 1996 with the 64-megabit
DRAM. Today, some question whether DRAM capacity can improve at all in 5 to 7
years, due to difficulties in manufacturing an increasingly three-dimensional DRAM
cell [Kim 2005].

1.4 Trends in Technology

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

18 ■ Chapter One Fundamentals of Quantitative Design and Analysis

■ Semiconductor Flash (electrically erasable programmable read-only mem-
ory)—This nonvolatile semiconductor memory is the standard storage device
in PMDs, and its rapidly increasing popularity has fueled its rapid growth rate
in capacity. Capacity per Flash chip has increased by about 50% to 60% per
year recently, doubling roughly every two years. In 2011, Flash memory is 15
to 20 times cheaper per bit than DRAM. Chapter 2 describes Flash memory.

■ Magnetic disk technology—Prior to 1990, density increased by about 30%
per year, doubling in three years. It rose to 60% per year thereafter, and
increased to 100% per year in 1996. Since 2004, it has dropped back to
about 40% per year, or doubled every three years. Disks are 15 to 25 times
cheaper per bit than Flash. Given the slowed growth rate of DRAM, disks
are now 300 to 500 times cheaper per bit than DRAM. This technology is
central to server and warehouse scale storage, and we discuss the trends in
detail in Appendix D.

■ Network technology—Network performance depends both on the perfor-
mance of switches and on the performance of the transmission system. We
discuss the trends in networking in Appendix F.

These rapidly changing technologies shape the design of a computer that,
with speed and technology enhancements, may have a lifetime of three to five
years. Key technologies such as DRAM, Flash, and disk change sufficiently that
the designer must plan for these changes. Indeed, designers often design for the
next technology, knowing that when a product begins shipping in volume that the
next technology may be the most cost-effective or may have performance advan-
tages. Traditionally, cost has decreased at about the rate at which density
increases.

Although technology improves continuously, the impact of these improve-
ments can be in discrete leaps, as a threshold that allows a new capability is
reached. For example, when MOS technology reached a point in the early 1980s
where between 25,000 and 50,000 transistors could fit on a single chip, it became
possible to build a single-chip, 32-bit microprocessor. By the late 1980s, first-level
caches could go on a chip. By eliminating chip crossings within the processor and
between the processor and the cache, a dramatic improvement in cost-performance
and energy-performance was possible. This design was simply infeasible until the
technology reached a certain point. With multicore microprocessors and increasing
numbers of cores each generation, even server computers are increasingly headed
toward a single chip for all processors. Such technology thresholds are not rare and
have a significant impact on a wide variety of design decisions.

Performance Trends: Bandwidth over Latency

As we shall see in Section 1.8, bandwidth or throughput is the total amount of
work done in a given time, such as megabytes per second for a disk transfer. In
contrast, latency or response time is the time between the start and the completion
of an event, such as milliseconds for a disk access. Figure 1.9 plots the relative

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.4 Trends in Technology ■ 19

improvement in bandwidth and latency for technology milestones for micropro-
cessors, memory, networks, and disks. Figure 1.10 describes the examples and
milestones in more detail.

Performance is the primary differentiator for microprocessors and networks,
so they have seen the greatest gains: 10,000–25,000X in bandwidth and 30–80X
in latency. Capacity is generally more important than performance for memory
and disks, so capacity has improved most, yet bandwidth advances of 300–
1200X are still much greater than gains in latency of 6–8X.

Clearly, bandwidth has outpaced latency across these technologies and will
likely continue to do so. A simple rule of thumb is that bandwidth grows by at
least the square of the improvement in latency. Computer designers should plan
accordingly.

Scaling of Transistor Performance and Wires

Integrated circuit processes are characterized by the feature size, which is the
minimum size of a transistor or a wire in either the x or y dimension. Feature
sizes have decreased from 10 microns in 1971 to 0.032 microns in 2011; in fact,
we have switched units, so production in 2011 is referred to as “32 nanometers,”
and 22 nanometer chips are under way. Since the transistor count per square

Figure 1.9 Log–log plot of bandwidth and latency milestones from Figure 1.10 rela-
tive to the first milestone. Note that latency improved 6X to 80X while bandwidth
improved about 300X to 25,000X. Updated from Patterson [2004].

1

10

100

1000

10,000

100,000

Relative latency improvement

R
el

at
iv

e
ba

nd
w

id
th

 im
pr

ov
em

en
t

1 10 100

(Latency improvement
= bandwidth improvement)

Memory

Network

Microprocessor

Disk

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

20 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Microprocessor 16-bit
address/

bus,
microcoded

32-bit
address/

bus,
microcoded

5-stage
pipeline,

on-chip I & D
caches, FPU

2-way
superscalar,
64-bit bus

Out-of-order
3-way

superscalar

Out-of-order
superpipelined,

on-chip L2
cache

Multicore
OOO 4-way
on chip L3

cache, Turbo

Product Intel 80286 Intel 80386 Intel 80486 Intel Pentium Intel Pentium Pro Intel Pentium 4 Intel Core i7

Year 1982 1985 1989 1993 1997 2001 2010

Die size (mm2) 47 43 81 90 308 217 240

Transistors 134,000 275,000 1,200,000 3,100,000 5,500,000 42,000,000 1,170,000,000

Processors/chip 1 1 1 1 1 1 4

Pins 68 132 168 273 387 423 1366

Latency (clocks) 6 5 5 5 10 22 14

Bus width (bits) 16 32 32 64 64 64 196

Clock rate (MHz) 12.5 16 25 66 200 1500 3333

Bandwidth (MIPS) 2 6 25 132 600 4500 50,000

Latency (ns) 320 313 200 76 50 15 4

Memory module DRAM Page mode
DRAM

Fast page
mode DRAM

Fast page
mode DRAM

Synchronous
DRAM

Double data
rate SDRAM

DDR3
SDRAM

Module width (bits) 16 16 32 64 64 64 64

Year 1980 1983 1986 1993 1997 2000 2010

Mbits/DRAM chip 0.06 0.25 1 16 64 256 2048

Die size (mm2) 35 45 70 130 170 204 50

Pins/DRAM chip 16 16 18 20 54 66 134

Bandwidth (MBytes/s) 13 40 160 267 640 1600 16,000

Latency (ns) 225 170 125 75 62 52 37

Local area network Ethernet Fast
Ethernet

Gigabit
Ethernet

10 Gigabit
Ethernet

100 Gigabit
Ethernet

IEEE standard 802.3 803.3u 802.3ab 802.3ac 802.3ba

Year 1978 1995 1999 2003 2010

Bandwidth (Mbits/sec) 10 100 1000 10,000 100,000

Latency (µsec) 3000 500 340 190 100

Hard disk 3600 RPM 5400 RPM 7200 RPM 10,000 RPM 15,000 RPM 15,000 RPM

Product CDC WrenI
94145-36

Seagate
ST41600

Seagate
ST15150

Seagate
ST39102

Seagate
ST373453

Seagate
ST3600057

Year 1983 1990 1994 1998 2003 2010

Capacity (GB) 0.03 1.4 4.3 9.1 73.4 600

Disk form factor 5.25 inch 5.25 inch 3.5 inch 3.5 inch 3.5 inch 3.5 inch

Media diameter 5.25 inch 5.25 inch 3.5 inch 3.0 inch 2.5 inch 2.5 inch

Interface ST-412 SCSI SCSI SCSI SCSI SAS

Bandwidth (MBytes/s) 0.6 4 9 24 86 204

Latency (ms) 48.3 17.1 12.7 8.8 5.7 3.6

Figure 1.10 Performance milestones over 25 to 40 years for microprocessors, memory, networks, and disks. The
microprocessor milestones are several generations of IA-32 processors, going from a 16-bit bus, microcoded
80286 to a 64-bit bus, multicore, out-of-order execution, superpipelined Core i7. Memory module milestones go
from 16-bit-wide, plain DRAM to 64-bit-wide double data rate version 3 synchronous DRAM. Ethernet advanced from
10 Mbits/sec to 100 Gbits/sec. Disk milestones are based on rotation speed, improving from 3600 RPM to 15,000
RPM. Each case is best-case bandwidth, and latency is the time for a simple operation assuming no contention.
Updated from Patterson [2004].

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.5 Trends in Power and Energy in Integrated Circuits ■ 21

millimeter of silicon is determined by the surface area of a transistor, the density
of transistors increases quadratically with a linear decrease in feature size.

The increase in transistor performance, however, is more complex. As feature
sizes shrink, devices shrink quadratically in the horizontal dimension and also
shrink in the vertical dimension. The shrink in the vertical dimension requires a
reduction in operating voltage to maintain correct operation and reliability of the
transistors. This combination of scaling factors leads to a complex interrelation-
ship between transistor performance and process feature size. To a first approxi-
mation, transistor performance improves linearly with decreasing feature size.

The fact that transistor count improves quadratically with a linear improve-
ment in transistor performance is both the challenge and the opportunity for
which computer architects were created! In the early days of microprocessors,
the higher rate of improvement in density was used to move quickly from 4-bit,
to 8-bit, to 16-bit, to 32-bit, to 64-bit microprocessors. More recently, density
improvements have supported the introduction of multiple processors per chip,
wider SIMD units, and many of the innovations in speculative execution and
caches found in Chapters 2, 3, 4, and 5.

Although transistors generally improve in performance with decreased fea-
ture size, wires in an integrated circuit do not. In particular, the signal delay for a
wire increases in proportion to the product of its resistance and capacitance. Of
course, as feature size shrinks, wires get shorter, but the resistance and capaci-
tance per unit length get worse. This relationship is complex, since both resis-
tance and capacitance depend on detailed aspects of the process, the geometry of
a wire, the loading on a wire, and even the adjacency to other structures. There
are occasional process enhancements, such as the introduction of copper, which
provide one-time improvements in wire delay.

In general, however, wire delay scales poorly compared to transistor perfor-
mance, creating additional challenges for the designer. In the past few years, in
addition to the power dissipation limit, wire delay has become a major design
limitation for large integrated circuits and is often more critical than transistor
switching delay. Larger and larger fractions of the clock cycle have been con-
sumed by the propagation delay of signals on wires, but power now plays an even
greater role than wire delay.

Today, power is the biggest challenge facing the computer designer for nearly
every class of computer. First, power must be brought in and distributed around
the chip, and modern microprocessors use hundreds of pins and multiple inter-
connect layers just for power and ground. Second, power is dissipated as heat and
must be removed.

Power and Energy: A Systems Perspective

How should a system architect or a user think about performance, power, and
energy? From the viewpoint of a system designer, there are three primary concerns.

1.5 Trends in Power and Energy in Integrated Circuits

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

22 ■ Chapter One Fundamentals of Quantitative Design and Analysis

First, what is the maximum power a processor ever requires? Meeting this
demand can be important to ensuring correct operation. For example, if a proces-
sor attempts to draw more power than a power supply system can provide (by
drawing more current than the system can supply), the result is typically a volt-
age drop, which can cause the device to malfunction. Modern processors can
vary widely in power consumption with high peak currents; hence, they provide
voltage indexing methods that allow the processor to slow down and regulate
voltage within a wider margin. Obviously, doing so decreases performance.

Second, what is the sustained power consumption? This metric is widely
called the thermal design power (TDP), since it determines the cooling require-
ment. TDP is neither peak power, which is often 1.5 times higher, nor is it the
actual average power that will be consumed during a given computation, which is
likely to be lower still. A typical power supply for a system is usually sized to
exceed the TDP, and a cooling system is usually designed to match or exceed
TDP. Failure to provide adequate cooling will allow the junction temperature in
the processor to exceed its maximum value, resulting in device failure and possi-
bly permanent damage. Modern processors provide two features to assist in man-
aging heat, since the maximum power (and hence heat and temperature rise) can
exceed the long-term average specified by the TDP. First, as the thermal temper-
ature approaches the junction temperature limit, circuitry reduces the clock rate,
thereby reducing power. Should this technique not be successful, a second ther-
mal overload trip is activated to power down the chip.

The third factor that designers and users need to consider is energy and
energy efficiency. Recall that power is simply energy per unit time: 1 watt =
1 joule per second. Which metric is the right one for comparing processors:
energy or power? In general, energy is always a better metric because it is tied to
a specific task and the time required for that task. In particular, the energy to exe-
cute a workload is equal to the average power times the execution time for the
workload.

Thus, if we want to know which of two processors is more efficient for a given
task, we should compare energy consumption (not power) for executing the task.
For example, processor A may have a 20% higher average power consumption
than processor B, but if A executes the task in only 70% of the time needed by B,
its energy consumption will be 1.2 × 0.7 = 0.84, which is clearly better.

One might argue that in a large server or cloud, it is sufficient to consider
average power, since the workload is often assumed to be infinite, but this is mis-
leading. If our cloud were populated with processor Bs rather than As, then the
cloud would do less work for the same amount of energy expended. Using energy
to compare the alternatives avoids this pitfall. Whenever we have a fixed work-
load, whether for a warehouse-size cloud or a smartphone, comparing energy will
be the right way to compare processor alternatives, as the electricity bill for the
cloud and the battery lifetime for the smartphone are both determined by the
energy consumed.

When is power consumption a useful measure? The primary legitimate use is
as a constraint: for example, a chip might be limited to 100 watts. It can be used

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.5 Trends in Power and Energy in Integrated Circuits ■ 23

as a metric if the workload is fixed, but then it’s just a variation of the true metric
of energy per task.

Energy and Power within a Microprocessor

For CMOS chips, the traditional primary energy consumption has been in switch-
ing transistors, also called dynamic energy. The energy required per transistor is
proportional to the product of the capacitive load driven by the transistor and the
square of the voltage:

This equation is the energy of pulse of the logic transition of 0→1→0 or 1→0→1.
The energy of a single transition (0→1 or 1→0) is then:

The power required per transistor is just the product of the energy of a transition
multiplied by the frequency of transitions:

For a fixed task, slowing clock rate reduces power, but not energy.
Clearly, dynamic power and energy are greatly reduced by lowering the

voltage, so voltages have dropped from 5V to just under 1V in 20 years. The
capacitive load is a function of the number of transistors connected to an output
and the technology, which determines the capacitance of the wires and the tran-
sistors.

Example Some microprocessors today are designed to have adjustable voltage, so a 15%
reduction in voltage may result in a 15% reduction in frequency. What would be
the impact on dynamic energy and on dynamic power?

Answer Since the capacitance is unchanged, the answer for energy is the ratio of the volt-
ages since the capacitance is unchanged:

thereby reducing energy to about 72% of the original. For power, we add the ratio
of the frequencies

shrinking power to about 61% of the original.

Energydynamic Capacitive load Voltage
2×∝

Energydynamic 1 2⁄ Capacitive load Voltage
2××∝

Powerdynamic 1 2⁄ Capacitive load× Voltage
2

Frequency switched××∝

Energynew

Energyold

Voltage 0.85×()2

Voltage
2

--- 0.85
2

0.72= = =

Powernew

Powerold
----------------------- 0.72

Frequency switched 0.85×()
Frequency switched

---× 0.61= =

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

24 ■ Chapter One Fundamentals of Quantitative Design and Analysis

As we move from one process to the next, the increase in the number of
transistors switching and the frequency with which they switch dominate the
decrease in load capacitance and voltage, leading to an overall growth in power
consumption and energy. The first microprocessors consumed less than a watt
and the first 32-bit microprocessors (like the Intel 80386) used about 2 watts,
while a 3.3 GHz Intel Core i7 consumes 130 watts. Given that this heat must be
dissipated from a chip that is about 1.5 cm on a side, we have reached the limit
of what can be cooled by air.

Given the equation above, you would expect clock frequency growth to
slow down if we can’t reduce voltage or increase power per chip. Figure 1.11
shows that this has indeed been the case since 2003, even for the microproces-
sors in Figure 1.1 that were the highest performers each year. Note that this
period of flat clock rates corresponds to the period of slow performance
improvement range in Figure 1.1.

Figure 1.11 Growth in clock rate of microprocessors in Figure 1.1. Between 1978 and 1986, the clock rate improved
less than 15% per year while performance improved by 25% per year. During the “renaissance period” of 52% perfor-
mance improvement per year between 1986 and 2003, clock rates shot up almost 40% per year. Since then, the clock
rate has been nearly flat, growing at less than 1% per year, while single processor performance improved at less than
22% per year.

1

10

100

1000

10,000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

C
lo

ck
 r

at
e

(M
H

z)

Intel Pentium4 Xeon
3200 MHz in 2003

Intel Nehalem Xeon
3330 MHz in 2010

Intel Pentium III
1000 MHz in 2000

Digital Alpha 21164A
500 MHz in 1996

Digital Alpha 21064
150 MHz in 1992

MIPS M2000
25 MHz in 1989

Digital VAX-11/780
5 MHz in 1978

Sun-4 SPARC
16.7 MHz in 1986

15%/year

40%/year

1%/year

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.5 Trends in Power and Energy in Integrated Circuits ■ 25

Distributing the power, removing the heat, and preventing hot spots have
become increasingly difficult challenges. Power is now the major constraint to
using transistors; in the past, it was raw silicon area. Hence, modern micropro-
cessors offer many techniques to try to improve energy efficiency despite flat
clock rates and constant supply voltages:

1. Do nothing well. Most microprocessors today turn off the clock of inactive
modules to save energy and dynamic power. For example, if no floating-point
instructions are executing, the clock of the floating-point unit is disabled. If
some cores are idle, their clocks are stopped.

2. Dynamic Voltage-Frequency Scaling (DVFS). The second technique comes
directly from the formulas above. Personal mobile devices, laptops, and even
servers have periods of low activity where there is no need to operate at the
highest clock frequency and voltages. Modern microprocessors typically
offer a few clock frequencies and voltages in which to operate that use lower
power and energy. Figure 1.12 plots the potential power savings via DVFS
for a server as the workload shrinks for three different clock rates: 2.4 GHz,
1.8 GHz, and 1 GHz. The overall server power savings is about 10% to 15%
for each of the two steps.

3. Design for typical case. Given that PMDs and laptops are often idle, mem-
ory and storage offer low power modes to save energy. For example,
DRAMs have a series of increasingly lower power modes to extend battery
life in PMDs and laptops, and there have been proposals for disks that have a
mode that spins at lower rates when idle to save power. Alas, you cannot
access DRAMs or disks in these modes, so you must return to fully active
mode to read or write, no matter how low the access rate. As mentioned

Figure 1.12 Energy savings for a server using an AMD Opteron microprocessor,
8 GB of DRAM, and one ATA disk. At 1.8 GHz, the server can only handle up to two-
thirds of the workload without causing service level violations, and, at 1.0 GHz, it can
only safely handle one-third of the workload. (Figure 5.11 in Barroso and Hölzle [2009].)

100

P
ow

er
 (

%
 o

f p
ea

k)
 80

60

40

20

0

1 GHz

DVS savings (%)

1.8 GHz
2.4 GHz

Idle 7 14 21 29 36 43 50 57 64 71 79 86 93 100

Compute load (%)

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

26 ■ Chapter One Fundamentals of Quantitative Design and Analysis

above, microprocessors for PCs have been designed instead for a more
typical case of heavy use at high operating temperatures, relying on on-chip
temperature sensors to detect when activity should be reduced automati-
cally to avoid overheating. This “emergency slowdown” allows manufac-
turers to design for a more typical case and then rely on this safety
mechanism if someone really does run programs that consume much more
power than is typical.

4. Overclocking. Intel started offering Turbo mode in 2008, where the chip
decides that it is safe to run at a higher clock rate for a short time possibly on
just a few cores until temperature starts to rise. For example, the 3.3 GHz
Core i7 can run in short bursts for 3.6 GHz. Indeed, the highest-performing
microprocessors each year since 2008 in Figure 1.1 have all offered tempo-
rary overclocking of about 10% over the nominal clock rate. For single
threaded code, these microprocessors can turn off all cores but one and run it
at an even higher clock rate. Note that while the operating system can turn off
Turbo mode there is no notification once it is enabled, so the programmers
may be surprised to see their programs vary in performance due to room
temperature!

Although dynamic power is traditionally thought of as the primary source of
power dissipation in CMOS, static power is becoming an important issue because
leakage current flows even when a transistor is off:

That is, static power is proportional to number of devices.
Thus, increasing the number of transistors increases power even if they are

idle, and leakage current increases in processors with smaller transistor sizes.
As a result, very low power systems are even turning off the power supply
(power gating) to inactive modules to control loss due to leakage. In 2011, the
goal for leakage is 25% of the total power consumption, with leakage in high-
performance designs sometimes far exceeding that goal. Leakage can be as high
as 50% for such chips, in part because of the large SRAM caches that need power
to maintain the storage values. (The S in SRAM is for static.) The only hope to
stop leakage is to turn off power to subsets of the chips.

Finally, because the processor is just a portion of the whole energy cost of a
system, it can make sense to use a faster, less energy-efficient processor to
allow the rest of the system to go into a sleep mode. This strategy is known as
race-to-halt.

The importance of power and energy has increased the scrutiny on the effi-
ciency of an innovation, so the primary evaluation now is tasks per joule or per-
formance per watt as opposed to performance per mm2 of silicon. This new
metric affects approaches to parallelism, as we shall see in Chapters 4 and 5.

Powerstatic Currentstatic Voltage×∝

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.6 Trends in Cost ■ 27

Although costs tend to be less important in some computer designs—specifically
supercomputers—cost-sensitive designs are of growing significance. Indeed, in
the past 30 years, the use of technology improvements to lower cost, as well as
increase performance, has been a major theme in the computer industry.

Textbooks often ignore the cost half of cost-performance because costs
change, thereby dating books, and because the issues are subtle and differ across
industry segments. Yet, an understanding of cost and its factors is essential for
computer architects to make intelligent decisions about whether or not a new
feature should be included in designs where cost is an issue. (Imagine architects
designing skyscrapers without any information on costs of steel beams and
concrete!)

This section discusses the major factors that influence the cost of a computer
and how these factors are changing over time.

The Impact of Time, Volume, and Commoditization

The cost of a manufactured computer component decreases over time even with-
out major improvements in the basic implementation technology. The underlying
principle that drives costs down is the learning curve—manufacturing costs
decrease over time. The learning curve itself is best measured by change in
yield—the percentage of manufactured devices that survives the testing proce-
dure. Whether it is a chip, a board, or a system, designs that have twice the yield
will have half the cost.

Understanding how the learning curve improves yield is critical to projecting
costs over a product’s life. One example is that the price per megabyte of DRAM
has dropped over the long term. Since DRAMs tend to be priced in close relation-
ship to cost—with the exception of periods when there is a shortage or an
oversupply—price and cost of DRAM track closely.

Microprocessor prices also drop over time, but, because they are less stan-
dardized than DRAMs, the relationship between price and cost is more complex.
In a period of significant competition, price tends to track cost closely, although
microprocessor vendors probably rarely sell at a loss.

Volume is a second key factor in determining cost. Increasing volumes affect
cost in several ways. First, they decrease the time needed to get down the learn-
ing curve, which is partly proportional to the number of systems (or chips) manu-
factured. Second, volume decreases cost, since it increases purchasing and
manufacturing efficiency. As a rule of thumb, some designers have estimated that
cost decreases about 10% for each doubling of volume. Moreover, volume
decreases the amount of development cost that must be amortized by each com-
puter, thus allowing cost and selling price to be closer.

Commodities are products that are sold by multiple vendors in large volumes
and are essentially identical. Virtually all the products sold on the shelves of gro-
cery stores are commodities, as are standard DRAMs, Flash memory, disks,

1.6 Trends in Cost

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

28 ■ Chapter One Fundamentals of Quantitative Design and Analysis

monitors, and keyboards. In the past 25 years, much of the personal computer
industry has become a commodity business focused on building desktop and lap-
top computers running Microsoft Windows.

Because many vendors ship virtually identical products, the market is highly
competitive. Of course, this competition decreases the gap between cost and sell-
ing price, but it also decreases cost. Reductions occur because a commodity mar-
ket has both volume and a clear product definition, which allows multiple
suppliers to compete in building components for the commodity product. As a
result, the overall product cost is lower because of the competition among the
suppliers of the components and the volume efficiencies the suppliers can
achieve. This rivalry has led to the low end of the computer business being able
to achieve better price-performance than other sectors and yielded greater growth
at the low end, although with very limited profits (as is typical in any commodity
business).

Cost of an Integrated Circuit

Why would a computer architecture book have a section on integrated circuit
costs? In an increasingly competitive computer marketplace where standard
parts—disks, Flash memory, DRAMs, and so on—are becoming a significant
portion of any system’s cost, integrated circuit costs are becoming a greater por-
tion of the cost that varies between computers, especially in the high-volume,
cost-sensitive portion of the market. Indeed, with personal mobile devices’
increasing reliance of whole systems on a chip (SOC), the cost of the integrated
circuits is much of the cost of the PMD. Thus, computer designers must under-
stand the costs of chips to understand the costs of current computers.

Although the costs of integrated circuits have dropped exponentially, the
basic process of silicon manufacture is unchanged: A wafer is still tested and
chopped into dies that are packaged (see Figures 1.13, 1.14, and 1.15). Thus, the
cost of a packaged integrated circuit is

Cost of integrated circuit =

In this section, we focus on the cost of dies, summarizing the key issues in testing
and packaging at the end.

Learning how to predict the number of good chips per wafer requires first
learning how many dies fit on a wafer and then learning how to predict the per-
centage of those that will work. From there it is simple to predict cost:

The most interesting feature of this first term of the chip cost equation is its sensi-
tivity to die size, shown below.

Cost of die + Cost of testing die + Cost of packaging and final test

Final test yield

Cost of die
Cost of wafer

Dies per wafer Die yield×
---=

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.6 Trends in Cost ■ 29

Figure 1.13 Photograph of an Intel Core i7 microprocessor die, which is evaluated in
Chapters 2 through 5. The dimensions are 18.9 mm by 13.6 mm (257 mm2) in a 45 nm
process. (Courtesy Intel.)

Figure 1.14 Floorplan of Core i7 die in Figure 1.13 on left with close-up of floorplan of second core on right.

Memory controller
Out-of-
order
scheduling
&
instruction
commit

Execution
units

Instruction
decode,
register
renaming,
&
microcode

L1 inst
cache
& inst
fetch

Branch
pre-
diction

Virtual
memory

L2 cache
&
interrupt
servicing

Memory
ordering &
execution

L1
data
cache

M
i
s
c

M
i
s
c

Q
u
e
u
e

M
e
m
o
r
y

Core Core Core

Shared L3
cache

Core

Q
P
I

Q
P
I

 I/O I/O

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

30 ■ Chapter One Fundamentals of Quantitative Design and Analysis

The number of dies per wafer is approximately the area of the wafer divided
by the area of the die. It can be more accurately estimated by

The first term is the ratio of wafer area (πr2) to die area. The second compensates
for the “square peg in a round hole” problem—rectangular dies near the periph-
ery of round wafers. Dividing the circumference (πd) by the diagonal of a square
die is approximately the number of dies along the edge.

Figure 1.15 This 300 mm wafer contains 280 full Sandy Bridge dies, each 20.7 by
10.5 mm in a 32 nm process. (Sandy Bridge is Intel’s successor to Nehalem used in the
Core i7.) At 216 mm2, the formula for dies per wafer estimates 282. (Courtesy Intel.)

Dies per wafer
π Wafer diameter/2()2×

Die area
---= –

π Wafer diameter×
2 Die area×

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.6 Trends in Cost ■ 31

Example Find the number of dies per 300 mm (30 cm) wafer for a die that is 1.5 cm on a
side and for a die that is 1.0 cm on a side.

Answer When die area is 2.25 cm2:

Since the area of the larger die is 2.25 times bigger, there are roughly 2.25 as
many smaller dies per wafer:

However, this formula only gives the maximum number of dies per wafer.
The critical question is: What is the fraction of good dies on a wafer, or the die
yield? A simple model of integrated circuit yield, which assumes that defects are
randomly distributed over the wafer and that yield is inversely proportional to the
complexity of the fabrication process, leads to the following:

This Bose–Einstein formula is an empirical model developed by looking at the
yield of many manufacturing lines [Sydow 2006]. Wafer yield accounts for
wafers that are completely bad and so need not be tested. For simplicity, we’ll
just assume the wafer yield is 100%. Defects per unit area is a measure of the ran-
dom manufacturing defects that occur. In 2010, the value was typically 0.1 to 0.3
defects per square inch, or 0.016 to 0.057 defects per square centimeter, for a
40 nm process, as it depends on the maturity of the process (recall the learning
curve, mentioned earlier). Finally, N is a parameter called the process-complexity
factor, a measure of manufacturing difficulty. For 40 nm processes in 2010, N
ranged from 11.5 to 15.5.

Example Find the die yield for dies that are 1.5 cm on a side and 1.0 cm on a side, assum-
ing a defect density of 0.031 per cm2 and N is 13.5.

Answer The total die areas are 2.25 cm2 and 1.00 cm2. For the larger die, the yield is

For the smaller die, the yield is

That is, less than half of all the large dies are good but two-thirds of the small
dies are good.

Dies per wafer
π 30 2⁄()2×

2.25
------------------------------= –

π 30×
2 2.25×

706.9
2.25

------------- –
94.2
2.12
---------- 270= =

Dies per wafer
π 30 2⁄()2×

1.00
------------------------------= –

π 30×
2 1.00×

706.9
1.00

------------- –
94.2
1.41
---------- 640= =

Die yield Wafer yield 1 1 Defects per unit area Die area×+()⁄ N×=

Die yield 1 1 0.031 2.25×+()⁄ 13.5
0.40= =

Die yield 1 1 0.031 1.00×+()⁄ 13.5
0.66= =

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

32 ■ Chapter One Fundamentals of Quantitative Design and Analysis

The bottom line is the number of good dies per wafer, which comes from
multiplying dies per wafer by die yield to incorporate the effects of defects. The
examples above predict about 109 good 2.25 cm2 dies from the 300 mm wafer
and 424 good 1.00 cm2 dies. Many microprocessors fall between these two sizes.
Low-end embedded 32-bit processors are sometimes as small as 0.10 cm2, and
processors used for embedded control (in printers, microwaves, and so on) are
often less than 0.04 cm2.

Given the tremendous price pressures on commodity products such as
DRAM and SRAM, designers have included redundancy as a way to raise yield.
For a number of years, DRAMs have regularly included some redundant memory
cells, so that a certain number of flaws can be accommodated. Designers have
used similar techniques in both standard SRAMs and in large SRAM arrays used
for caches within microprocessors. Obviously, the presence of redundant entries
can be used to boost the yield significantly.

Processing of a 300 mm (12-inch) diameter wafer in a leading-edge technol-
ogy cost between $5000 and $6000 in 2010. Assuming a processed wafer cost of
$5500, the cost of the 1.00 cm2 die would be around $13, but the cost per die of
the 2.25 cm2 die would be about $51, or almost four times the cost for a die that
is a little over twice as large.

What should a computer designer remember about chip costs? The manufac-
turing process dictates the wafer cost, wafer yield, and defects per unit area, so
the sole control of the designer is die area. In practice, because the number of
defects per unit area is small, the number of good dies per wafer, and hence the
cost per die, grows roughly as the square of the die area. The computer designer
affects die size, and hence cost, both by what functions are included on or
excluded from the die and by the number of I/O pins.

Before we have a part that is ready for use in a computer, the die must be
tested (to separate the good dies from the bad), packaged, and tested again after
packaging. These steps all add significant costs.

The above analysis has focused on the variable costs of producing a func-
tional die, which is appropriate for high-volume integrated circuits. There is,
however, one very important part of the fixed costs that can significantly affect
the cost of an integrated circuit for low volumes (less than 1 million parts),
namely, the cost of a mask set. Each step in the integrated circuit process requires
a separate mask. Thus, for modern high-density fabrication processes with four to
six metal layers, mask costs exceed $1M. Obviously, this large fixed cost affects
the cost of prototyping and debugging runs and, for small-volume production,
can be a significant part of the production cost. Since mask costs are likely to
continue to increase, designers may incorporate reconfigurable logic to enhance
the flexibility of a part or choose to use gate arrays (which have fewer custom
mask levels) and thus reduce the cost implications of masks.

Cost versus Price

With the commoditization of computers, the margin between the cost to manu-
facture a product and the price the product sells for has been shrinking. Those

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.7 Dependability ■ 33

margins pay for a company’s research and development (R&D), marketing, sales,
manufacturing equipment maintenance, building rental, cost of financing, pretax
profits, and taxes. Many engineers are surprised to find that most companies
spend only 4% (in the commodity PC business) to 12% (in the high-end server
business) of their income on R&D, which includes all engineering.

Cost of Manufacturing versus Cost of Operation

For the first four editions of this book, cost meant the cost to build a computer
and price meant price to purchase a computer. With the advent of warehouse-
scale computers, which contain tens of thousands of servers, the cost to operate
the computers is significant in addition to the cost of purchase.

As Chapter 6 shows, the amortized purchase price of servers and networks is
just over 60% of the monthly cost to operate a warehouse-scale computer, assum-
ing a short lifetime of the IT equipment of 3 to 4 years. About 30% of the
monthly operational costs are for power use and the amortized infrastructure to
distribute power and to cool the IT equipment, despite this infrastructure being
amortized over 10 years. Thus, to lower operational costs in a warehouse-scale
computer, computer architects need to use energy efficiently.

Historically, integrated circuits were one of the most reliable components of a
computer. Although their pins may be vulnerable, and faults may occur over
communication channels, the error rate inside the chip was very low. That con-
ventional wisdom is changing as we head to feature sizes of 32 nm and smaller,
as both transient faults and permanent faults will become more commonplace, so
architects must design systems to cope with these challenges. This section gives a
quick overview of the issues in dependability, leaving the official definition of
the terms and approaches to Section D.3 in Appendix D.

Computers are designed and constructed at different layers of abstraction. We
can descend recursively down through a computer seeing components enlarge
themselves to full subsystems until we run into individual transistors. Although
some faults are widespread, like the loss of power, many can be limited to a sin-
gle component in a module. Thus, utter failure of a module at one level may be
considered merely a component error in a higher-level module. This distinction is
helpful in trying to find ways to build dependable computers.

One difficult question is deciding when a system is operating properly. This
philosophical point became concrete with the popularity of Internet services.
Infrastructure providers started offering service level agreements (SLAs) or
service level objectives (SLOs) to guarantee that their networking or power ser-
vice would be dependable. For example, they would pay the customer a penalty
if they did not meet an agreement more than some hours per month. Thus, an
SLA could be used to decide whether the system was up or down.

1.7 Dependability

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

34 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Systems alternate between two states of service with respect to an SLA:

1. Service accomplishment, where the service is delivered as specified

2. Service interruption, where the delivered service is different from the SLA

Transitions between these two states are caused by failures (from state 1 to
state 2) or restorations (2 to 1). Quantifying these transitions leads to the two
main measures of dependability:

■ Module reliability is a measure of the continuous service accomplishment (or,
equivalently, of the time to failure) from a reference initial instant. Hence, the
mean time to failure (MTTF) is a reliability measure. The reciprocal of
MTTF is a rate of failures, generally reported as failures per billion hours of
operation, or FIT (for failures in time). Thus, an MTTF of 1,000,000 hours
equals 109/106 or 1000 FIT. Service interruption is measured as mean time to
repair (MTTR). Mean time between failures (MTBF) is simply the sum of
MTTF + MTTR. Although MTBF is widely used, MTTF is often the more
appropriate term. If a collection of modules has exponentially distributed
lifetimes—meaning that the age of a module is not important in probability of
failure—the overall failure rate of the collection is the sum of the failure rates
of the modules.

■ Module availability is a measure of the service accomplishment with respect
to the alternation between the two states of accomplishment and interruption.
For nonredundant systems with repair, module availability is

Note that reliability and availability are now quantifiable metrics, rather than
synonyms for dependability. From these definitions, we can estimate reliability
of a system quantitatively if we make some assumptions about the reliability of
components and that failures are independent.

Example Assume a disk subsystem with the following components and MTTF:

■ 10 disks, each rated at 1,000,000-hour MTTF

■ 1 ATA controller, 500,000-hour MTTF

■ 1 power supply, 200,000-hour MTTF

■ 1 fan, 200,000-hour MTTF

■ 1 ATA cable, 1,000,000-hour MTTF

Using the simplifying assumptions that the lifetimes are exponentially distributed
and that failures are independent, compute the MTTF of the system as a whole.

Module availability
MTTF

MTTF MTTR+()
---=

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.7 Dependability ■ 35

Answer The sum of the failure rates is

or 23,000 FIT. The MTTF for the system is just the inverse of the failure rate:

or just under 5 years.

The primary way to cope with failure is redundancy, either in time (repeat the
operation to see if it still is erroneous) or in resources (have other components to
take over from the one that failed). Once the component is replaced and the sys-
tem fully repaired, the dependability of the system is assumed to be as good as
new. Let’s quantify the benefits of redundancy with an example.

Example Disk subsystems often have redundant power supplies to improve dependability.
Using the components and MTTFs from above, calculate the reliability of
redundant power supplies. Assume one power supply is sufficient to run the disk
subsystem and that we are adding one redundant power supply.

Answer We need a formula to show what to expect when we can tolerate a failure and still
provide service. To simplify the calculations, we assume that the lifetimes of the
components are exponentially distributed and that there is no dependency
between the component failures. MTTF for our redundant power supplies is the
mean time until one power supply fails divided by the chance that the other will
fail before the first one is replaced. Thus, if the chance of a second failure before
repair is small, then the MTTF of the pair is large.

Since we have two power supplies and independent failures, the mean time
until one disk fails is MTTFpower supply/2. A good approximation of the probability
of a second failure is MTTR over the mean time until the other power supply fails.
Hence, a reasonable approximation for a redundant pair of power supplies is

Using the MTTF numbers above, if we assume it takes on average 24 hours for a
human operator to notice that a power supply has failed and replace it, the reli-
ability of the fault tolerant pair of power supplies is

making the pair about 4150 times more reliable than a single power supply.

Failure ratesystem 10
1

1,000,000

1
500,000
-------------------+× 1

200,000

1
200,000

1
1,000,000
------------------------+ + +=

10 2 5 5 1+ + + +
1,000,000 hours

23

1,000,000

23,000
1,000,000,000 hours
--= ==

MTTFsystem
1

Failure ratesystem
--

1,000,000,000 hours
23,000

-- 43,500 hours===

MTTFpower supply pair

MTTFpower supply 2⁄
MTTRpower supply

MTTFpower supply
--

--
MTTFpower supply

2
2⁄

MTTRpower supply
--

MTTFpower supply
2

2 MTTRpower supply×
---= = =

MTTFpower supply pair

MTTFpower supply
2

2 MTTRpower supply×

200,000
2

2 24×
---------------------- 830,000,000≅= =

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

36 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Having quantified the cost, power, and dependability of computer technology, we
are ready to quantify performance.

When we say one computer is faster than another is, what do we mean? The
user of a desktop computer may say a computer is faster when a program runs
in less time, while an Amazon.com administrator may say a computer is faster
when it completes more transactions per hour. The computer user is interested
in reducing response time—the time between the start and the completion of an
event—also referred to as execution time. The operator of a warehouse-scale
computer may be interested in increasing throughput—the total amount of
work done in a given time.

In comparing design alternatives, we often want to relate the performance of
two different computers, say, X and Y. The phrase “X is faster than Y” is used
here to mean that the response time or execution time is lower on X than on Y for
the given task. In particular, “X is n times faster than Y” will mean:

 =

Since execution time is the reciprocal of performance, the following relationship
holds:

n = = =

The phrase “the throughput of X is 1.3 times higher than Y” signifies here that
the number of tasks completed per unit time on computer X is 1.3 times the num-
ber completed on Y.

Unfortunately, time is not always the metric quoted in comparing the perfor-
mance of computers. Our position is that the only consistent and reliable measure
of performance is the execution time of real programs, and that all proposed
alternatives to time as the metric or to real programs as the items measured have
eventually led to misleading claims or even mistakes in computer design.

Even execution time can be defined in different ways depending on what we
count. The most straightforward definition of time is called wall-clock time,
response time, or elapsed time, which is the latency to complete a task, including
disk accesses, memory accesses, input/output activities, operating system over-
head—everything. With multiprogramming, the processor works on another pro-
gram while waiting for I/O and may not necessarily minimize the elapsed time of
one program. Hence, we need a term to consider this activity. CPU time recog-
nizes this distinction and means the time the processor is computing, not includ-
ing the time waiting for I/O or running other programs. (Clearly, the response
time seen by the user is the elapsed time of the program, not the CPU time.)

1.8 Measuring, Reporting, and Summarizing Performance

Execution timeY

Execution timeX
-- n

Execution timeY

Execution timeX
--

1
PerformanceY

1
PerformanceX

PerformanceX

PerformanceY

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.8 Measuring, Reporting, and Summarizing Performance ■ 37

Computer users who routinely run the same programs would be the perfect
candidates to evaluate a new computer. To evaluate a new system the users would
simply compare the execution time of their workloads—the mixture of programs
and operating system commands that users run on a computer. Few are in this
happy situation, however. Most must rely on other methods to evaluate comput-
ers, and often other evaluators, hoping that these methods will predict per-
formance for their usage of the new computer.

Benchmarks

The best choice of benchmarks to measure performance is real applications, such
as Google Goggles from Section 1.1. Attempts at running programs that are
much simpler than a real application have led to performance pitfalls. Examples
include:

■ Kernels, which are small, key pieces of real applications

■ Toy programs, which are 100-line programs from beginning programming
assignments, such as quicksort

■ Synthetic benchmarks, which are fake programs invented to try to match the
profile and behavior of real applications, such as Dhrystone

All three are discredited today, usually because the compiler writer and architect
can conspire to make the computer appear faster on these stand-in programs than
on real applications. Depressingly for your authors—who dropped the fallacy
about using synthetic programs to characterize performance in the fourth edition
of this book since we thought computer architects agreed it was disreputable—
the synthetic program Dhrystone is still the most widely quoted benchmark for
embedded processors!

Another issue is the conditions under which the benchmarks are run. One
way to improve the performance of a benchmark has been with benchmark-
specific flags; these flags often caused transformations that would be illegal on
many programs or would slow down performance on others. To restrict this pro-
cess and increase the significance of the results, benchmark developers often
require the vendor to use one compiler and one set of flags for all the programs in
the same language (C++ or C). In addition to the question of compiler flags,
another question is whether source code modifications are allowed. There are
three different approaches to addressing this question:

1. No source code modifications are allowed.

2. Source code modifications are allowed but are essentially impossible. For
example, database benchmarks rely on standard database programs that are
tens of millions of lines of code. The database companies are highly unlikely
to make changes to enhance the performance for one particular computer.

3. Source modifications are allowed, as long as the modified version produces
the same output.

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

38 ■ Chapter One Fundamentals of Quantitative Design and Analysis

The key issue that benchmark designers face in deciding to allow modification of
the source is whether such modifications will reflect real practice and provide
useful insight to users, or whether such modifications simply reduce the accuracy
of the benchmarks as predictors of real performance.

To overcome the danger of placing too many eggs in one basket, collections
of benchmark applications, called benchmark suites, are a popular measure of
performance of processors with a variety of applications. Of course, such suites
are only as good as the constituent individual benchmarks. Nonetheless, a key
advantage of such suites is that the weakness of any one benchmark is lessened
by the presence of the other benchmarks. The goal of a benchmark suite is that it
will characterize the relative performance of two computers, particularly for pro-
grams not in the suite that customers are likely to run.

A cautionary example is the Electronic Design News Embedded Micropro-
cessor Benchmark Consortium (or EEMBC, pronounced “embassy”) bench-
marks. It is a set of 41 kernels used to predict performance of different embedded
applications: automotive/industrial, consumer, networking, office automation,
and telecommunications. EEMBC reports unmodified performance and “full
fury” performance, where almost anything goes. Because these benchmarks use
kernels, and because of the reporting options, EEMBC does not have the reputa-
tion of being a good predictor of relative performance of different embedded
computers in the field. This lack of success is why Dhrystone, which EEMBC
was trying to replace, is still used.

One of the most successful attempts to create standardized benchmark appli-
cation suites has been the SPEC (Standard Performance Evaluation Corporation),
which had its roots in efforts in the late 1980s to deliver better benchmarks for
workstations. Just as the computer industry has evolved over time, so has the
need for different benchmark suites, and there are now SPEC benchmarks to
cover many application classes. All the SPEC benchmark suites and their
reported results are found at www.spec.org.

Although we focus our discussion on the SPEC benchmarks in many of the
following sections, many benchmarks have also been developed for PCs running
the Windows operating system.

Desktop Benchmarks

Desktop benchmarks divide into two broad classes: processor-intensive bench-
marks and graphics-intensive benchmarks, although many graphics benchmarks
include intensive processor activity. SPEC originally created a benchmark set
focusing on processor performance (initially called SPEC89), which has evolved
into its fifth generation: SPEC CPU2006, which follows SPEC2000, SPEC95
SPEC92, and SPEC89. SPEC CPU2006 consists of a set of 12 integer bench-
marks (CINT2006) and 17 floating-point benchmarks (CFP2006). Figure 1.16
describes the current SPEC benchmarks and their ancestry.

SPEC benchmarks are real programs modified to be portable and to minimize
the effect of I/O on performance. The integer benchmarks vary from part of a C

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.8 Measuring, Reporting, and Summarizing Performance ■ 39

Figure 1.16 SPEC2006 programs and the evolution of the SPEC benchmarks over time, with integer programs
above the line and floating-point programs below the line. Of the 12 SPEC2006 integer programs, 9 are written in
C, and the rest in C++. For the floating-point programs, the split is 6 in Fortran, 4 in C++, 3 in C, and 4 in mixed C and
Fortran. The figure shows all 70 of the programs in the 1989, 1992, 1995, 2000, and 2006 releases. The benchmark
descriptions on the left are for SPEC2006 only and do not apply to earlier versions. Programs in the same row from
different generations of SPEC are generally not related; for example, fpppp is not a CFD code like bwaves. Gcc is the
senior citizen of the group. Only 3 integer programs and 3 floating-point programs survived three or more
generations. Note that all the floating-point programs are new for SPEC2006. Although a few are carried over from
generation to generation, the version of the program changes and either the input or the size of the benchmark is
often changed to increase its running time and to avoid perturbation in measurement or domination of the execu-
tion time by some factor other than CPU time.

SPEC2006 benchmark description

GNU C compiler

Interpreted string processing

Combinatorial optimization

Block-sorting compression

Go game (AI)

Video compression

Games/path finding

Search gene sequence

Quantum computer simulation

Discrete event simulation library

Chess game (AI)

XML parsing

CFD/blast waves

Numerical relativity

Finite element code

Differential equation solver framework

Quantum chemistry

EM solver (freq/time domain)

Scalable molecular dynamics (~NAMD)

Lattice Boltzman method (fluid/air flow)

Large eddie simulation/turbulent CFD

Lattice quantum chromodynamics

Molecular dynamics

Image ray tracing

Spare linear algebra

Speech recognition

Quantum chemistry/object oriented

Weather research and forecasting

Magneto hydrodynamics (astrophysics)

gcc

espresso

li

eqntott

perl

mcf

bzip2

vortex

gzip

eon

twolf

vortex

vpr

crafty

parser

wupwise

apply

galgel

mesa

art

equake

facerec

ammp

lucas

fma3d

sixtrack

apsi

mgrid

applu

turb3d

swim

hydro2d

su2cor

wave5

fpppp

tomcatv

doduc

nasa7

spice

matrix300

go

h264avc

astar

hmmer

libquantum

omnetpp

sjeng

xalancbmk

bwaves

cactusADM

calculix

dealll

gamess

GemsFDTD

gromacs

lbm

LESlie3d

milc

namd

povray

soplex

sphinx3

tonto

wrf

zeusmp

SPEC89SPEC95

Benchmark name by SPEC generation

SPEC92SPEC2000SPEC2006

go

ijpeg

m88ksim

compress

sc

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

40 ■ Chapter One Fundamentals of Quantitative Design and Analysis

compiler to a chess program to a quantum computer simulation. The floating-
point benchmarks include structured grid codes for finite element modeling, par-
ticle method codes for molecular dynamics, and sparse linear algebra codes for
fluid dynamics. The SPEC CPU suite is useful for processor benchmarking for
both desktop systems and single-processor servers. We will see data on many of
these programs throughout this text. However, note that these programs share lit-
tle with programming languages and environments and the Google Goggles
application that Section 1.1 describes. Seven use C++, eight use C, and nine use
Fortran! They are even statically linked, and the applications themselves are dull.
It’s not clear that SPECINT2006 and SPECFP2006 capture what is exciting
about computing in the 21st century.

In Section 1.11, we describe pitfalls that have occurred in developing the
SPEC benchmark suite, as well as the challenges in maintaining a useful and pre-
dictive benchmark suite.

SPEC CPU2006 is aimed at processor performance, but SPEC offers many
other benchmarks.

Server Benchmarks

Just as servers have multiple functions, so are there multiple types of bench-
marks. The simplest benchmark is perhaps a processor throughput-oriented
benchmark. SPEC CPU2000 uses the SPEC CPU benchmarks to construct a sim-
ple throughput benchmark where the processing rate of a multiprocessor can be
measured by running multiple copies (usually as many as there are processors) of
each SPEC CPU benchmark and converting the CPU time into a rate. This leads
to a measurement called the SPECrate, and it is a measure of request-level paral-
lelism from Section 1.2. To measure thread-level parallelism, SPEC offers what
they call high-performance computing benchmarks around OpenMP and MPI.

Other than SPECrate, most server applications and benchmarks have signifi-
cant I/O activity arising from either disk or network traffic, including bench-
marks for file server systems, for Web servers, and for database and transaction-
processing systems. SPEC offers both a file server benchmark (SPECSFS) and a
Web server benchmark (SPECWeb). SPECSFS is a benchmark for measuring
NFS (Network File System) performance using a script of file server requests; it
tests the performance of the I/O system (both disk and network I/O) as well as the
processor. SPECSFS is a throughput-oriented benchmark but with important
response time requirements. (Appendix D discusses some file and I/O system
benchmarks in detail.) SPECWeb is a Web server benchmark that simulates mul-
tiple clients requesting both static and dynamic pages from a server, as well as
clients posting data to the server. SPECjbb measures server performance for Web
applications written in Java. The most recent SPEC benchmark is
SPECvirt_Sc2010, which evaluates end-to-end performance of virtualized data-
center servers, including hardware, the virtual machine layer, and the virtualized
guest operating system. Another recent SPEC benchmark measures power, which
we examine in Section 1.10.

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.8 Measuring, Reporting, and Summarizing Performance ■ 41

Transaction-processing (TP) benchmarks measure the ability of a system to
handle transactions that consist of database accesses and updates. Airline reser-
vation systems and bank ATM systems are typical simple examples of TP; more
sophisticated TP systems involve complex databases and decision-making. In the
mid-1980s, a group of concerned engineers formed the vendor-independent
Transaction Processing Council (TPC) to try to create realistic and fair bench-
marks for TP. The TPC benchmarks are described at www.tpc.org.

The first TPC benchmark, TPC-A, was published in 1985 and has since been
replaced and enhanced by several different benchmarks. TPC-C, initially created
in 1992, simulates a complex query environment. TPC-H models ad hoc decision
support—the queries are unrelated and knowledge of past queries cannot be used
to optimize future queries. TPC-E is a new On-Line Transaction Processing
(OLTP) workload that simulates a brokerage firm’s customer accounts. The most
recent effort is TPC Energy, which adds energy metrics to all the existing TPC
benchmarks.

All the TPC benchmarks measure performance in transactions per second. In
addition, they include a response time requirement, so that throughput perfor-
mance is measured only when the response time limit is met. To model real-
world systems, higher transaction rates are also associated with larger systems, in
terms of both users and the database to which the transactions are applied.
Finally, the system cost for a benchmark system must also be included, allowing
accurate comparisons of cost-performance. TPC modified its pricing policy so
that there is a single specification for all the TPC benchmarks and to allow verifi-
cation of the prices that TPC publishes.

Reporting Performance Results

The guiding principle of reporting performance measurements should be repro-
ducibility—list everything another experimenter would need to duplicate the
results. A SPEC benchmark report requires an extensive description of the com-
puter and the compiler flags, as well as the publication of both the baseline and
optimized results. In addition to hardware, software, and baseline tuning parame-
ter descriptions, a SPEC report contains the actual performance times, shown
both in tabular form and as a graph. A TPC benchmark report is even more com-
plete, since it must include results of a benchmarking audit and cost information.
These reports are excellent sources for finding the real costs of computing sys-
tems, since manufacturers compete on high performance and cost-performance.

Summarizing Performance Results

In practical computer design, you must evaluate myriad design choices for their
relative quantitative benefits across a suite of benchmarks believed to be rele-
vant. Likewise, consumers trying to choose a computer will rely on performance
measurements from benchmarks, which hopefully are similar to the user’s appli-
cations. In both cases, it is useful to have measurements for a suite of bench-

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

42 ■ Chapter One Fundamentals of Quantitative Design and Analysis

marks so that the performance of important applications is similar to that of one
or more benchmarks in the suite and that variability in performance can be under-
stood. In the ideal case, the suite resembles a statistically valid sample of the
application space, but such a sample requires more benchmarks than are typically
found in most suites and requires a randomized sampling, which essentially no
benchmark suite uses.

Once we have chosen to measure performance with a benchmark suite, we
would like to be able to summarize the performance results of the suite in a single
number. A straightforward approach to computing a summary result would be to
compare the arithmetic means of the execution times of the programs in the suite.
Alas, some SPEC programs take four times longer than others do, so those pro-
grams would be much more important if the arithmetic mean were the single
number used to summarize performance. An alternative would be to add a
weighting factor to each benchmark and use the weighted arithmetic mean as the
single number to summarize performance. The problem would then be how to
pick weights; since SPEC is a consortium of competing companies, each com-
pany might have their own favorite set of weights, which would make it hard to
reach consensus. One approach is to use weights that make all programs execute
an equal time on some reference computer, but this biases the results to the per-
formance characteristics of the reference computer.

Rather than pick weights, we could normalize execution times to a reference
computer by dividing the time on the reference computer by the time on the com-
puter being rated, yielding a ratio proportional to performance. SPEC uses this
approach, calling the ratio the SPECRatio. It has a particularly useful property
that it matches the way we compare computer performance throughout this
text—namely, comparing performance ratios. For example, suppose that the
SPECRatio of computer A on a benchmark was 1.25 times higher than computer
B; then we would know:

Notice that the execution times on the reference computer drop out and the
choice of the reference computer is irrelevant when the comparisons are made as
a ratio, which is the approach we consistently use. Figure 1.17 gives an example.

Because a SPECRatio is a ratio rather than an absolute execution time, the
mean must be computed using the geometric mean. (Since SPECRatios have no
units, comparing SPECRatios arithmetically is meaningless.) The formula is

1.25
SPECRatioA

SPECRatioB

Execution timereference

Execution timeA
--

Execution timereference

Execution timeB
--

--
Execution timeB

Execution timeA
--

PerformanceA

PerformanceB
----------------------------------== = =

Geometric mean

n

samplei

i 1=

n

∏=

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.8 Measuring, Reporting, and Summarizing Performance ■ 43

In the case of SPEC, samplei is the SPECRatio for program i. Using the geomet-
ric mean ensures two important properties:

1. The geometric mean of the ratios is the same as the ratio of the geometric
means.

2. The ratio of the geometric means is equal to the geometric mean of the per-
formance ratios, which implies that the choice of the reference computer is
irrelevant.

Hence, the motivations to use the geometric mean are substantial, especially
when we use performance ratios to make comparisons.

Example Show that the ratio of the geometric means is equal to the geometric mean of the
performance ratios, and that the reference computer of SPECRatio matters not.

Answer Assume two computers A and B and a set of SPECRatios for each.

Benchmarks

Ultra 5
time
(sec)

Opteron
time (sec) SPECRatio

Itanium 2
time (sec) SPECRatio

Opteron/Itanium
times (sec)

Itanium/Opteron
SPECRatios

wupwise 1600 51.5 31.06 56.1 28.53 0.92 0.92

swim 3100 125.0 24.73 70.7 43.85 1.77 1.77

mgrid 1800 98.0 18.37 65.8 27.36 1.49 1.49

applu 2100 94.0 22.34 50.9 41.25 1.85 1.85

mesa 1400 64.6 21.69 108.0 12.99 0.60 0.60

galgel 2900 86.4 33.57 40.0 72.47 2.16 2.16

art 2600 92.4 28.13 21.0 123.67 4.40 4.40

equake 1300 72.6 17.92 36.3 35.78 2.00 2.00

facerec 1900 73.6 25.80 86.9 21.86 0.85 0.85

ammp 2200 136.0 16.14 132.0 16.63 1.03 1.03

lucas 2000 88.8 22.52 107.0 18.76 0.83 0.83

fma3d 2100 120.0 17.48 131.0 16.09 0.92 0.92

sixtrack 1100 123.0 8.95 68.8 15.99 1.79 1.79

apsi 2600 150.0 17.36 231.0 11.27 0.65 0.65

Geometric mean 20.86 27.12 1.30 1.30

Figure 1.17 SPECfp2000 execution times (in seconds) for the Sun Ultra 5—the reference computer of SPEC2000—
and execution times and SPECRatios for the AMD Opteron and Intel Itanium 2. (SPEC2000 multiplies the ratio of exe-
cution times by 100 to remove the decimal point from the result, so 20.86 is reported as 2086.) The final two columns
show the ratios of execution times and SPECRatios. This figure demonstrates the irrelevance of the reference computer
in relative performance. The ratio of the execution times is identical to the ratio of the SPECRatios, and the ratio of the
geometric means (27.12/20.86 = 1.30) is identical to the geometric mean of the ratios (1.30).

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

44 ■ Chapter One Fundamentals of Quantitative Design and Analysis

That is, the ratio of the geometric means of the SPECRatios of A and B is the
geometric mean of the performance ratios of A to B of all the benchmarks in the
suite. Figure 1.17 demonstrates this validity using examples from SPEC.

Now that we have seen how to define, measure, and summarize performance,
cost, dependability, energy, and power, we can explore guidelines and principles
that are useful in the design and analysis of computers. This section introduces
important observations about design, as well as two equations to evaluate
alternatives.

Take Advantage of Parallelism

Taking advantage of parallelism is one of the most important methods for
improving performance. Every chapter in this book has an example of how
performance is enhanced through the exploitation of parallelism. We give three
brief examples here, which are expounded on in later chapters.

Our first example is the use of parallelism at the system level. To improve the
throughput performance on a typical server benchmark, such as SPECWeb or
TPC-C, multiple processors and multiple disks can be used. The workload of han-
dling requests can then be spread among the processors and disks, resulting in
improved throughput. Being able to expand memory and the number of processors
and disks is called scalability, and it is a valuable asset for servers. Spreading of
data across many disks for parallel reads and writes enables data-level parallelism.
SPECWeb also relies on request-level parallelism to use many processors while
TPC-C uses thread-level parallelism for faster processing of database queries.

At the level of an individual processor, taking advantage of parallelism
among instructions is critical to achieving high performance. One of the simplest
ways to do this is through pipelining. (It is explained in more detail in
Appendix C and is a major focus of Chapter 3.) The basic idea behind pipelining

Geometric meanA

Geometric meanB

SPECRatio Ai

i 1=

n

∏n

SPECRatio Bi

i 1=

n

∏n

SPECRatio Ai

SPECRatio Bi

i 1=

n

∏n
==

Execution timereferencei

Execution timeAi

--

Execution timereferencei

Execution timeBi

--

--

i 1=

n

∏
n

=
Execution timeBi

Execution timeAi

i 1=

n

∏n

PerformanceAi

PerformanceBi

i 1=

n

∏n
= =

1.9 Quantitative Principles of Computer Design

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.9 Quantitative Principles of Computer Design ■ 45

is to overlap instruction execution to reduce the total time to complete an instruc-
tion sequence. A key insight that allows pipelining to work is that not every
instruction depends on its immediate predecessor, so executing the instructions
completely or partially in parallel may be possible. Pipelining is the best-known
example of instruction-level parallelism.

Parallelism can also be exploited at the level of detailed digital design. For
example, set-associative caches use multiple banks of memory that are typically
searched in parallel to find a desired item. Modern ALUs (arithmetic-logical
units) use carry-lookahead, which uses parallelism to speed the process of com-
puting sums from linear to logarithmic in the number of bits per operand. These
are more examples of data-level parallelism.

Principle of Locality

Important fundamental observations have come from properties of programs.
The most important program property that we regularly exploit is the principle of
locality: Programs tend to reuse data and instructions they have used recently. A
widely held rule of thumb is that a program spends 90% of its execution time in
only 10% of the code. An implication of locality is that we can predict with rea-
sonable accuracy what instructions and data a program will use in the near future
based on its accesses in the recent past. The principle of locality also applies to
data accesses, though not as strongly as to code accesses.

Two different types of locality have been observed. Temporal locality states
that recently accessed items are likely to be accessed in the near future. Spatial
locality says that items whose addresses are near one another tend to be refer-
enced close together in time. We will see these principles applied in Chapter 2.

Focus on the Common Case

Perhaps the most important and pervasive principle of computer design is to
focus on the common case: In making a design trade-off, favor the frequent
case over the infrequent case. This principle applies when determining how to
spend resources, since the impact of the improvement is higher if the occur-
rence is frequent.

Focusing on the common case works for power as well as for resource alloca-
tion and performance. The instruction fetch and decode unit of a processor may
be used much more frequently than a multiplier, so optimize it first. It works on
dependability as well. If a database server has 50 disks for every processor, stor-
age dependability will dominate system dependability.

In addition, the frequent case is often simpler and can be done faster than the
infrequent case. For example, when adding two numbers in the processor, we can
expect overflow to be a rare circumstance and can therefore improve perfor-
mance by optimizing the more common case of no overflow. This emphasis may
slow down the case when overflow occurs, but if that is rare then overall perfor-
mance will be improved by optimizing for the normal case.

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

46 ■ Chapter One Fundamentals of Quantitative Design and Analysis

We will see many cases of this principle throughout this text. In applying this
simple principle, we have to decide what the frequent case is and how much per-
formance can be improved by making that case faster. A fundamental law, called
Amdahl’s law, can be used to quantify this principle.

Amdahl’s Law

The performance gain that can be obtained by improving some portion of a com-
puter can be calculated using Amdahl’s law. Amdahl’s law states that the perfor-
mance improvement to be gained from using some faster mode of execution is
limited by the fraction of the time the faster mode can be used.

Amdahl’s law defines the speedup that can be gained by using a particular
feature. What is speedup? Suppose that we can make an enhancement to a com-
puter that will improve performance when it is used. Speedup is the ratio:

Speedup =

Alternatively,

Speedup =

Speedup tells us how much faster a task will run using the computer with the
enhancement as opposed to the original computer.

Amdahl’s law gives us a quick way to find the speedup from some enhance-
ment, which depends on two factors:

1. The fraction of the computation time in the original computer that can be
converted to take advantage of the enhancement—For example, if 20
seconds of the execution time of a program that takes 60 seconds in total
can use an enhancement, the fraction is 20/60. This value, which we will call
Fractionenhanced, is always less than or equal to 1.

2. The improvement gained by the enhanced execution mode, that is, how much
faster the task would run if the enhanced mode were used for the entire
program—This value is the time of the original mode over the time of the
enhanced mode. If the enhanced mode takes, say, 2 seconds for a portion of
the program, while it is 5 seconds in the original mode, the improvement is
5/2. We will call this value, which is always greater than 1, Speedupenhanced.

The execution time using the original computer with the enhanced mode will be
the time spent using the unenhanced portion of the computer plus the time spent
using the enhancement:

Execution timenew = Execution timeold ×

Performance for entire task using the enhancement when possible

Performance for entire task without using the enhancement

Execution time for entire task without using the enhancement

Execution time for entire task using the enhancement when possible

1 – Fractionenhanced()
Fractionenhanced

Speedupenhanced
--------------------------------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.9 Quantitative Principles of Computer Design ■ 47

The overall speedup is the ratio of the execution times:

Speedupoverall = =

Example Suppose that we want to enhance the processor used for Web serving. The new
processor is 10 times faster on computation in the Web serving application than
the original processor. Assuming that the original processor is busy with compu-
tation 40% of the time and is waiting for I/O 60% of the time, what is the overall
speedup gained by incorporating the enhancement?

Answer Fractionenhanced = 0.4; Speedupenhanced = 10; Speedupoverall = = ≈ 1.56

Amdahl’s law expresses the law of diminishing returns: The incremental
improvement in speedup gained by an improvement of just a portion of the com-
putation diminishes as improvements are added. An important corollary of
Amdahl’s law is that if an enhancement is only usable for a fraction of a task then
we can’t speed up the task by more than the reciprocal of 1 minus that fraction.

A common mistake in applying Amdahl’s law is to confuse “fraction of time
converted to use an enhancement” and “fraction of time after enhancement is in
use.” If, instead of measuring the time that we could use the enhancement in a
computation, we measure the time after the enhancement is in use, the results
will be incorrect!

Amdahl’s law can serve as a guide to how much an enhancement will
improve performance and how to distribute resources to improve cost-
performance. The goal, clearly, is to spend resources proportional to where time
is spent. Amdahl’s law is particularly useful for comparing the overall system
performance of two alternatives, but it can also be applied to compare two pro-
cessor design alternatives, as the following example shows.

Example A common transformation required in graphics processors is square root. Imple-
mentations of floating-point (FP) square root vary significantly in performance,
especially among processors designed for graphics. Suppose FP square root
(FPSQR) is responsible for 20% of the execution time of a critical graphics
benchmark. One proposal is to enhance the FPSQR hardware and speed up this
operation by a factor of 10. The other alternative is just to try to make all FP
instructions in the graphics processor run faster by a factor of 1.6; FP instructions
are responsible for half of the execution time for the application. The design team
believes that they can make all FP instructions run 1.6 times faster with the same
effort as required for the fast square root. Compare these two design alternatives.

Execution timeold

Execution timenew
--

1

1 – Fractionenhanced()
Fractionenhanced

Speedupenhanced
--------------------------------------+

1

0.6
0.4
10
-------+

1

0.64

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

48 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Answer We can compare these two alternatives by comparing the speedups:

SpeedupFPSQR = = = 1.22

SpeedupFP = = = 1.23

Improving the performance of the FP operations overall is slightly better because
of the higher frequency.

Amdahl’s law is applicable beyond performance. Let’s redo the reliability
example from page 35 after improving the reliability of the power supply via
redundancy from 200,000-hour to 830,000,000-hour MTTF, or 4150X better.

Example The calculation of the failure rates of the disk subsystem was

Therefore, the fraction of the failure rate that could be improved is 5 per million
hours out of 23 for the whole system, or 0.22.

Answer The reliability improvement would be

Improvementpower supply pair = = = 1.28

Despite an impressive 4150X improvement in reliability of one module, from the
system’s perspective, the change has a measurable but small benefit.

In the examples above, we needed the fraction consumed by the new and
improved version; often it is difficult to measure these times directly. In the next
section, we will see another way of doing such comparisons based on the use of
an equation that decomposes the CPU execution time into three separate compo-
nents. If we know how an alternative affects these three components, we can
determine its overall performance. Furthermore, it is often possible to build sim-
ulators that measure these components before the hardware is actually designed.

The Processor Performance Equation

Essentially all computers are constructed using a clock running at a constant rate.
These discrete time events are called ticks, clock ticks, clock periods, clocks,

1

1 0.2–() 0.2
10
-------+

1

0.82

1

1 0.5–() 0.5
1.6
-------+

1

0.8125

Failure ratesystem 10
1

1,000,000

1
500,000
-------------------+× 1

200,000

1
200,000

1
1,000,000
------------------------+ + +=

10 2 5 5 1+ + + +
1,000,000 hours

23

1,000,000 hours
---------------------------------------==

1

1 0.22–() 0.22
4150
------------+

--
1

0.78

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.9 Quantitative Principles of Computer Design ■ 49

cycles, or clock cycles. Computer designers refer to the time of a clock period by
its duration (e.g., 1 ns) or by its rate (e.g., 1 GHz). CPU time for a program can
then be expressed two ways:

or

CPU time =

In addition to the number of clock cycles needed to execute a program, we
can also count the number of instructions executed—the instruction path length
or instruction count (IC). If we know the number of clock cycles and the instruc-
tion count, we can calculate the average number of clock cycles per instruction
(CPI). Because it is easier to work with, and because we will deal with simple
processors in this chapter, we use CPI. Designers sometimes also use instructions
per clock (IPC), which is the inverse of CPI.

CPI is computed as

CPI =

This processor figure of merit provides insight into different styles of instruction
sets and implementations, and we will use it extensively in the next four chapters.

By transposing the instruction count in the above formula, clock cycles can
be defined as IC × CPI. This allows us to use CPI in the execution time formula:

Expanding the first formula into the units of measurement shows how the pieces
fit together:

 = = CPU time

As this formula demonstrates, processor performance is dependent upon three
characteristics: clock cycle (or rate), clock cycles per instruction, and instruction
count. Furthermore, CPU time is equally dependent on these three characteris-
tics; for example, a 10% improvement in any one of them leads to a 10%
improvement in CPU time.

Unfortunately, it is difficult to change one parameter in complete isolation
from others because the basic technologies involved in changing each character-
istic are interdependent:

■ Clock cycle time—Hardware technology and organization

■ CPI—Organization and instruction set architecture

■ Instruction count—Instruction set architecture and compiler technology

CPU time CPU clock cycles for a program Clock cycle time×=

CPU clock cycles for a program
Clock rate

CPU clock cycles for a program
Instruction count

CPU time Instruction count Cycles per instruction Clock cycle time××=

Instructions
Program

Clock cycles
Instruction

------------------------------× Seconds
Clock cycle
----------------------------× Seconds

Program

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

50 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Luckily, many potential performance improvement techniques primarily improve
one component of processor performance with small or predictable impacts on
the other two.

Sometimes it is useful in designing the processor to calculate the number of
total processor clock cycles as

CPU clock cycles =

where ICi represents the number of times instruction i is executed in a program
and CPIi represents the average number of clocks per instruction for instruction i.
This form can be used to express CPU time as

and overall CPI as

The latter form of the CPI calculation uses each individual CPIi and the fraction
of occurrences of that instruction in a program (i.e., ICi ÷ Instruction count). CPIi
should be measured and not just calculated from a table in the back of a reference
manual since it must include pipeline effects, cache misses, and any other mem-
ory system inefficiencies.

Consider our performance example on page 47, here modified to use mea-
surements of the frequency of the instructions and of the instruction CPI values,
which, in practice, are obtained by simulation or by hardware instrumentation.

Example Suppose we have made the following measurements:

Frequency of FP operations = 25%

Average CPI of FP operations = 4.0

Average CPI of other instructions = 1.33

Frequency of FPSQR = 2%

CPI of FPSQR = 20

Assume that the two design alternatives are to decrease the CPI of FPSQR to 2 or
to decrease the average CPI of all FP operations to 2.5. Compare these two
design alternatives using the processor performance equation.

ICi CPIi×
i 1=

n

∑

CPU time ICi CPIi×
i 1=

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

Clock cycle time×=

CPI

ICi CPIi×
i 1=

n

∑
Instruction count
--

ICi

Instruction count
-- CPIi×

i 1=

n

∑= =

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.9 Quantitative Principles of Computer Design ■ 51

Answer First, observe that only the CPI changes; the clock rate and instruction count
remain identical. We start by finding the original CPI with neither enhancement:

We can compute the CPI for the enhanced FPSQR by subtracting the cycles
saved from the original CPI:

We can compute the CPI for the enhancement of all FP instructions the same way
or by summing the FP and non-FP CPIs. Using the latter gives us:

Since the CPI of the overall FP enhancement is slightly lower, its performance
will be marginally better. Specifically, the speedup for the overall FP enhance-
ment is

Happily, we obtained this same speedup using Amdahl’s law on page 46.

It is often possible to measure the constituent parts of the processor perfor-
mance equation. This is a key advantage of using the processor performance
equation versus Amdahl’s law in the previous example. In particular, it may be
difficult to measure things such as the fraction of execution time for which a set
of instructions is responsible. In practice, this would probably be computed by
summing the product of the instruction count and the CPI for each of the instruc-
tions in the set. Since the starting point is often individual instruction count and
CPI measurements, the processor performance equation is incredibly useful.

To use the processor performance equation as a design tool, we need to be
able to measure the various factors. For an existing processor, it is easy to obtain
the execution time by measurement, and we know the default clock speed. The
challenge lies in discovering the instruction count or the CPI. Most new proces-
sors include counters for both instructions executed and for clock cycles. By
periodically monitoring these counters, it is also possible to attach execution time
and instruction count to segments of the code, which can be helpful to
programmers trying to understand and tune the performance of an application.
Often, a designer or programmer will want to understand performance at a more

CPIoriginal CPIi

ICi

Instruction count
--⎝ ⎠
⎛ ⎞×

i 1=

n

∑=

4 25%×() 1.33 75%×() 2.0=+=

CPIwith new FPSQR CPIoriginal – 2% CPIold FPSQR – CPIof new FPSQR only()×=

2.0 – 2% 20 – 2()× 1.64= =

CPInew FP 75% 1.33×() 25% 2.5×() 1.625=+=

Speedupnew FP

CPU timeoriginal

CPU timenew FP

IC Clock cycle CPIoriginal××
IC Clock cycle CPInew FP××
---= =

CPIoriginal

CPInew FP

2.00
1.625
------------- 1.23= = =

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

52 ■ Chapter One Fundamentals of Quantitative Design and Analysis

fine-grained level than what is available from the hardware counters. For exam-
ple, they may want to know why the CPI is what it is. In such cases, simulation
techniques used are like those for processors that are being designed.

Techniques that help with energy efficiency, such as dynamic voltage fre-
quency scaling and overclocking (see Section 1.5), make this equation harder to
use, since the clock speed may vary while we measure the program. A simple
approach is to turn off those features to make the results reproducible. Fortu-
nately, as performance and energy efficiency are often highly correlated—taking
less time to run a program generally saves energy—it’s probably safe to consider
performance without worrying about the impact of DVFS or overclocking on the
results.

In the “Putting It All Together” sections that appear near the end of every chapter,
we provide real examples that use the principles in that chapter. In this section,
we look at measures of performance and power-performance in small servers
using the SPECpower benchmark.

Figure 1.18 shows the three multiprocessor servers we are evaluating along
with their price. To keep the price comparison fair, all are Dell PowerEdge serv-
ers. The first is the PowerEdge R710, which is based on the Intel Xeon X5670
microprocessor with a clock rate of 2.93 GHz. Unlike the Intel Core i7 in Chap-
ters 2 through 5, which has 4 cores and an 8 MB L3 cache, this Intel chip has
6 cores and a 12 MB L3 cache, although the cores themselves are identical. We
selected a two-socket system with 12 GB of ECC-protected 1333 MHz DDR3
DRAM. The next server is the PowerEdge R815, which is based on the AMD
Opteron 6174 microprocessor. A chip has 6 cores and a 6 MB L3 cache, and it
runs at 2.20 GHz, but AMD puts two of these chips into a single socket. Thus, a
socket has 12 cores and two 6 MB L3 caches. Our second server has two sockets
with 24 cores and 16 GB of ECC-protected 1333 MHz DDR3 DRAM, and our
third server (also a PowerEdge R815) has four sockets with 48 cores and 32 GB
of DRAM. All are running the IBM J9 JVM and the Microsoft Windows 2008
Server Enterprise x64 Edition operating system.

Note that due to the forces of benchmarking (see Section 1.11), these are
unusually configured servers. The systems in Figure 1.18 have little memory rel-
ative to the amount of computation, and just a tiny 50 GB solid-state disk. It is
inexpensive to add cores if you don’t need to add commensurate increases in
memory and storage!

Rather than run statically linked C programs of SPEC CPU, SPECpower uses
a more modern software stack written in Java. It is based on SPECjbb, and it rep-
resents the server side of business applications, with performance measured as
the number transactions per second, called ssj_ops for server side Java opera-
tions per second. It exercises not only the processor of the server, as does SPEC

1.10 Putting It All Together: Performance, Price,
and Power

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.10 Putting It All Together: Performance, Price, and Power ■ 53

CPU, but also the caches, memory system, and even the multiprocessor intercon-
nection system. In addition, it exercises the Java Virtual Machine (JVM), includ-
ing the JIT runtime compiler and garbage collector, as well as portions of the
underlying operating system.

As the last two rows of Figure 1.18 show, the performance and price-perfor-
mance winner is the PowerEdge R815 with four sockets and 48 cores. It hits
1.8M ssj_ops, and the ssj_ops per dollar is highest at 145. Amazingly, the com-
puter with the largest number of cores is the most cost effective. In second place
is the two-socket R815 with 24 cores, and the R710 with 12 cores is in last place.

While most benchmarks (and most computer architects) care only about per-
formance of systems at peak load, computers rarely run at peak load. Indeed, Fig-
ure 6.2 in Chapter 6 shows the results of measuring the utilization of tens of
thousands of servers over 6 months at Google, and less than 1% operate at an
average utilization of 100%. The majority have an average utilization of between
10% and 50%. Thus, the SPECpower benchmark captures power as the target
workload varies from its peak in 10% intervals all the way to 0%, which is called
Active Idle.

Figure 1.19 plots the ssj_ops (SSJ operations/second) per watt and the aver-
age power as the target load varies from 100% to 0%. The Intel R710 always has
the lowest power and the best ssj_ops per watt across each target workload level.

System 1 System 2 System 3

Component Cost (% Cost) Cost (% Cost) Cost (% Cost)

Base server PowerEdge R710 $653 (7%) PowerEdge R815 $1437 (15%) PowerEdge R815 $1437 (11%)

Power supply 570 W 1100 W 1100 W

Processor Xeon X5670 $3738 (40%) Opteron 6174 $2679 (29%) Opteron 6174 $5358 (42%)

Clock rate 2.93 GHz 2.20 GHz 2.20 GHz

Total cores 12 24 48

Sockets 2 2 4

Cores/socket 6 12 12

DRAM 12 GB $484 (5%) 16 GB $693 (7%) 32 GB $1386 (11%)

Ethernet Inter. Dual 1-Gbit $199 (2%) Dual 1-Gbit $199 (2%) Dual 1-Gbit $199 (2%)

Disk 50 GB SSD $1279 (14%) 50 GB SSD $1279 (14%) 50 GB SSD $1279 (10%)

Windows OS $2999 (32%) $2999 (33%) $2999 (24%)

Total $9352 (100%) $9286 (100%) $12,658 (100%)

Max ssj_ops 910,978 926,676 1,840,450

Max ssj_ops/$ 97 100 145

Figure 1.18 Three Dell PowerEdge servers being measured and their prices as of August 2010. We calculated the
cost of the processors by subtracting the cost of a second processor. Similarly, we calculated the overall cost of
memory by seeing what the cost of extra memory was. Hence, the base cost of the server is adjusted by removing
the estimated cost of the default processor and memory. Chapter 5 describes how these multi-socket systems are
connected together.

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

54 ■ Chapter One Fundamentals of Quantitative Design and Analysis

One reason is the much larger power supply for the R815, at 1100 watts versus
570 in the R715. As Chapter 6 shows, power supply efficiency is very important
in the overall power efficiency of a computer. Since watts = joules/second, this
metric is proportional to SSJ operations per joule:

To calculate a single number to use to compare the power efficiency of sys-
tems, SPECpower uses:

The overall ssj_ops/watt of the three servers is 3034 for the Intel R710, 2357 for
the AMD dual-socket R815, and 2696 for the AMD quad-socket R815. Hence,

Figure 1.19 Power-performance of the three servers in Figure 1.18. Ssj_ops/watt values are on the left axis, with
the three columns associated with it, and watts are on the right axis, with the three lines associated with it. The hori-
zontal axis shows the target workload, as it varies from 100% to Active Idle. The Intel-based R715 has the best
ssj_ops/watt at each workload level, and it also consumes the lowest power at each level.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% Active Idle

Target workload

0

50

100

150

200

250

300

350

400

450

500

550

W
at

ts

710 Intel 12 core W

815 AMD 24 core W

815 AMD 48 core W

ss
j_

op
s/

w
at

t

815 AMD 48 core

815 AMD 24 core

710 Intel 12 core

ssj_operations/sec
Watt

ssj_operations/sec

Joule/sec

ssj_operations
Joule

----------------------------------= =

Overall ssj_ops/watt
ssj_ops∑
power∑

------------------------=

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.11 Fallacies and Pitfalls ■ 55

the Intel R710 has the best power-performance. Dividing by the price of the
servers, the ssj_ops/watt/$1000 is 324 for the Intel R710, 254 for the dual-
socket AMD R815, and 213 for the quad-socket MD R815. Thus, adding
power reverses the results of the price-performance competition, and the
price-power-performance trophy goes to Intel R710; the 48-core R815 comes
in last place.

The purpose of this section, which will be found in every chapter, is to explain
some commonly held misbeliefs or misconceptions that you should avoid. We
call such misbeliefs fallacies. When discussing a fallacy, we try to give a coun-
terexample. We also discuss pitfalls—easily made mistakes. Often pitfalls are
generalizations of principles that are true in a limited context. The purpose of
these sections is to help you avoid making these errors in computers that you
design.

Fallacy Multiprocessors are a silver bullet.

The switch to multiple processors per chip around 2005 did not come from some
breakthrough that dramatically simplified parallel programming or made it easy to
build multicore computers. The change occurred because there was no other option
due to the ILP walls and power walls. Multiple processors per chip do not guaran-
tee lower power; it’s certainly possible to design a multicore chip that uses more
power. The potential is just that it’s possible to continue to improve performance
by replacing a high-clock-rate, inefficient core with several lower-clock-rate, effi-
cient cores. As technology improves to shrink transistors, this can shrink both
capacitance and the supply voltage a bit so that we can get a modest increase in the
number of cores per generation. For example, for the last few years Intel has been
adding two cores per generation.

As we shall see in Chapters 4 and 5, performance is now a programmer’s bur-
den. The La-Z-Boy programmer era of relying on hardware designers to make
their programs go faster without lifting a finger is officially over. If programmers
want their programs to go faster with each generation, they must make their pro-
grams more parallel.

The popular version of Moore’s law—increasing performance with each gen-
eration of technology—is now up to programmers.

Pitfall Falling prey to Amdahl’s heartbreaking law.

Virtually every practicing computer architect knows Amdahl’s law. Despite this,
we almost all occasionally expend tremendous effort optimizing some feature
before we measure its usage. Only when the overall speedup is disappointing do
we recall that we should have measured first before we spent so much effort
enhancing it!

1.11 Fallacies and Pitfalls

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

56 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Pitfall A single point of failure.

The calculations of reliability improvement using Amdahl’s law on page 48 show
that dependability is no stronger than the weakest link in a chain. No matter how
much more dependable we make the power supplies, as we did in our example,
the single fan will limit the reliability of the disk subsystem. This Amdahl’s law
observation led to a rule of thumb for fault-tolerant systems to make sure that
every component was redundant so that no single component failure could bring
down the whole system. Chapter 6 shows how a software layer avoids single
points of failure inside warehouse-scale computers.

Fallacy Hardware enhancements that increase performance improve energy efficiency or
are at worst energy neutral.

Esmaeilzadeh et al. [2011] measured SPEC2006 on just one core of a 2.67 GHz
Intel Core i7 using Turbo mode (Section 1.5). Performance increased by a factor
of 1.07 when the clock rate increased to 2.94 GHz (or a factor of 1.10), but the i7
used a factor of 1.37 more joules and a factor of 1.47 more watt-hours!

Fallacy Benchmarks remain valid indefinitely.

Several factors influence the usefulness of a benchmark as a predictor of real per-
formance, and some change over time. A big factor influencing the usefulness of a
benchmark is its ability to resist “benchmark engineering” or “benchmarketing.”
Once a benchmark becomes standardized and popular, there is tremendous pres-
sure to improve performance by targeted optimizations or by aggressive interpre-
tation of the rules for running the benchmark. Small kernels or programs that
spend their time in a small amount of code are particularly vulnerable.

 For example, despite the best intentions, the initial SPEC89 benchmark suite
included a small kernel, called matrix300, which consisted of eight different
300 × 300 matrix multiplications. In this kernel, 99% of the execution time was
in a single line (see SPEC [1989]). When an IBM compiler optimized this inner
loop (using an idea called blocking, discussed in Chapters 2 and 4), performance
improved by a factor of 9 over a prior version of the compiler! This benchmark
tested compiler tuning and was not, of course, a good indication of overall per-
formance, nor of the typical value of this particular optimization.

Over a long period, these changes may make even a well-chosen bench-
mark obsolete; Gcc is the lone survivor from SPEC89. Figure 1.16 on page 39
lists the status of all 70 benchmarks from the various SPEC releases. Amaz-
ingly, almost 70% of all programs from SPEC2000 or earlier were dropped
from the next release.

Fallacy The rated mean time to failure of disks is 1,200,000 hours or almost 140 years, so
disks practically never fail.

The current marketing practices of disk manufacturers can mislead users. How is
such an MTTF calculated? Early in the process, manufacturers will put thousands

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.11 Fallacies and Pitfalls ■ 57

of disks in a room, run them for a few months, and count the number that fail.
They compute MTTF as the total number of hours that the disks worked cumula-
tively divided by the number that failed.

One problem is that this number far exceeds the lifetime of a disk, which is
commonly assumed to be 5 years or 43,800 hours. For this large MTTF to make
some sense, disk manufacturers argue that the model corresponds to a user who
buys a disk and then keeps replacing the disk every 5 years—the planned lifetime
of the disk. The claim is that if many customers (and their great-grandchildren)
did this for the next century, on average they would replace a disk 27 times
before a failure, or about 140 years.

A more useful measure would be percentage of disks that fail. Assume 1000
disks with a 1,000,000-hour MTTF and that the disks are used 24 hours a day. If
you replaced failed disks with a new one having the same reliability characteris-
tics, the number that would fail in a year (8760 hours) is

Stated alternatively, 0.9% would fail per year, or 4.4% over a 5-year lifetime.
Moreover, those high numbers are quoted assuming limited ranges of temper-

ature and vibration; if they are exceeded, then all bets are off. A survey of disk
drives in real environments [Gray and van Ingen 2005] found that 3% to 7% of
drives failed per year, for an MTTF of about 125,000 to 300,000 hours. An even
larger study found annual disk failure rates of 2% to 10% [Pinheiro, Weber, and
Barroso 2007]. Hence, the real-world MTTF is about 2 to 10 times worse than
the manufacturer’s MTTF.

Fallacy Peak performance tracks observed performance.

The only universally true definition of peak performance is “the performance
level a computer is guaranteed not to exceed.” Figure 1.20 shows the percentage
of peak performance for four programs on four multiprocessors. It varies from
5% to 58%. Since the gap is so large and can vary significantly by benchmark,
peak performance is not generally useful in predicting observed performance.

Pitfall Fault detection can lower availability.

This apparently ironic pitfall is because computer hardware has a fair amount of
state that may not always be critical to proper operation. For example, it is not
fatal if an error occurs in a branch predictor, as only performance may suffer.

In processors that try to aggressively exploit instruction-level parallelism, not
all the operations are needed for correct execution of the program. Mukherjee
et al. [2003] found that less than 30% of the operations were potentially on the
critical path for the SPEC2000 benchmarks running on an Itanium 2.

The same observation is true about programs. If a register is “dead” in a
program—that is, the program will write it before it is read again—then errors do

Failed disks
Number of disks Time period×

MTTF

1000 disks 8760 hours/drive×
1,000,000 hours/failure

--- 9== =

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

58 ■ Chapter One Fundamentals of Quantitative Design and Analysis

not matter. If you were to crash the program upon detection of a transient fault in
a dead register, it would lower availability unnecessarily.

Sun Microsystems lived this pitfall in 2000 with an L2 cache that included
parity, but not error correction, in its Sun E3000 to Sun E10000 systems. The
SRAMs they used to build the caches had intermittent faults, which parity
detected. If the data in the cache were not modified, the processor simply reread
the data from the cache. Since the designers did not protect the cache with ECC
(error-correcting code), the operating system had no choice but to report an error
to dirty data and crash the program. Field engineers found no problems on
inspection in more than 90% of the cases.

To reduce the frequency of such errors, Sun modified the Solaris operating
system to “scrub” the cache by having a process that proactively writes dirty data
to memory. Since the processor chips did not have enough pins to add ECC, the
only hardware option for dirty data was to duplicate the external cache, using the
copy without the parity error to correct the error.

The pitfall is in detecting faults without providing a mechanism to correct
them. These engineers are unlikely to design another computer without ECC on
external caches.

Figure 1.20 Percentage of peak performance for four programs on four multiprocessors scaled to 64 processors.
The Earth Simulator and X1 are vector processors (see Chapter 4 and Appendix G). Not only did they deliver a higher
fraction of peak performance, but they also had the highest peak performance and the lowest clock rates. Except for
the Paratec program, the Power 4 and Itanium 2 systems delivered between 5% and 10% of their peak. From Oliker
et al. [2004].

Paratec
plasma physics

33%

54%

58%

20%

6%

10%

54%

LBMHD
materials science

Cactus
astrophysics

GTC
magnetic fusion

0%

30%

20%

10%

40%

50%

P
er

ce
nt

ag
e

of
 p

ea
k

pe
rf

or
m

an
ce

60%

70%
Power4

Itanium 2

NEC Earth Simulator

Cray X1

34%

11%

34%

7% 6% 6% 5%

16%

11%

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

1.12 Concluding Remarks ■ 59

This chapter has introduced a number of concepts and provided a quantitative
framework that we will expand upon throughout the book. Starting with this edi-
tion, energy efficiency is the new companion to performance.

In Chapter 2, we start with the all-important area of memory system design.
We will examine a wide range of techniques that conspire to make memory look
infinitely large while still being as fast as possible. (Appendix B provides intro-
ductory material on caches for readers without much experience and background
in them.) As in later chapters, we will see that hardware–software cooperation
has become a key to high-performance memory systems, just as it has to high-
performance pipelines. This chapter also covers virtual machines, an increasingly
important technique for protection.

In Chapter 3, we look at instruction-level parallelism (ILP), of which pipelin-
ing is the simplest and most common form. Exploiting ILP is one of the most
important techniques for building high-speed uniprocessors. Chapter 3 begins
with an extensive discussion of basic concepts that will prepare you for the wide
range of ideas examined in both chapters. Chapter 3 uses examples that span
about 40 years, drawing from one of the first supercomputers (IBM 360/91) to
the fastest processors in the market in 2011. It emphasizes what is called the
dynamic or run time approach to exploiting ILP. It also talks about the limits to
ILP ideas and introduces multithreading, which is further developed in both
Chapters 4 and 5. Appendix C provides introductory material on pipelining for
readers without much experience and background in pipelining. (We expect it to
be a review for many readers, including those of our introductory text, Computer
Organization and Design: The Hardware/Software Interface.)

Chapter 4 is new to this edition, and it explains three ways to exploit data-
level parallelism. The classic and oldest approach is vector architecture, and we
start there to lay down the principles of SIMD design. (Appendix G goes into
greater depth on vector architectures.) We next explain the SIMD instruction set
extensions found in most desktop microprocessors today. The third piece is an in-
depth explanation of how modern graphics processing units (GPUs) work. Most
GPU descriptions are written from the programmer’s perspective, which usually
hides how the computer really works. This section explains GPUs from an
insider’s perspective, including a mapping between GPU jargon and more tradi-
tional architecture terms.

Chapter 5 focuses on the issue of achieving higher performance using multi-
ple processors, or multiprocessors. Instead of using parallelism to overlap indi-
vidual instructions, multiprocessing uses parallelism to allow multiple instruction
streams to be executed simultaneously on different processors. Our focus is on
the dominant form of multiprocessors, shared-memory multiprocessors, though
we introduce other types as well and discuss the broad issues that arise in any
multiprocessor. Here again, we explore a variety of techniques, focusing on the
important ideas first introduced in the 1980s and 1990s.

1.12 Concluding Remarks

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

60 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Chapter 6 is also new to this edition. We introduce clusters and then go into
depth on warehouse-scale computers (WSCs), which computer architects help
design. The designers of WSCs are the professional descendents of the pioneers
of supercomputers such as Seymour Cray in that they are designing extreme
computers. They contain tens of thousands of servers, and the equipment and
building that holds them cost nearly $200 M. The concerns of price-performance
and energy efficiency of the earlier chapters applies to WSCs, as does the quanti-
tative approach to making decisions.

This book comes with an abundance of material online (see Preface for more
details), both to reduce cost and to introduce readers to a variety of advanced top-
ics. Figure 1.21 shows them all. Appendices A, B, and C, which appear in the
book, will be review for many readers.

In Appendix D, we move away from a processor-centric view and discuss
issues in storage systems. We apply a similar quantitative approach, but one
based on observations of system behavior and using an end-to-end approach to
performance analysis. It addresses the important issue of how to efficiently store
and retrieve data using primarily lower-cost magnetic storage technologies. Our
focus is on examining the performance of disk storage systems for typical I/O-
intensive workloads, like the OLTP benchmarks we saw in this chapter. We
extensively explore advanced topics in RAID-based systems, which use redun-
dant disks to achieve both high performance and high availability. Finally, the
chapter introduces queuing theory, which gives a basis for trading off utilization
and latency.

Appendix E applies an embedded computing perspective to the ideas of each
of the chapters and early appendices.

Appendix F explores the topic of system interconnect broadly, including wide
area and system area networks that allow computers to communicate.

Appendix Title

A Instruction Set Principles

B Review of Memory Hierarchies

C Pipelining: Basic and Intermediate Concepts

D Storage Systems

E Embedded Systems

F Interconnection Networks

G Vector Processors in More Depth

H Hardware and Software for VLIW and EPIC

I Large-Scale Multiprocessors and Scientific Applications

J Computer Arithmetic

K Survey of Instruction Set Architectures

L Historical Perspectives and References

Figure 1.21 List of appendices.

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

Case Studies and Exercises by Diana Franklin ■ 61

Appendix H reviews VLIW hardware and software, which, in contrast, are
less popular than when EPIC appeared on the scene just before the last edition.

Appendix I describes large-scale multiprocessors for use in high-performance
computing.

Appendix J is the only appendix that remains from the first edition, and it
covers computer arithmetic.

Appendix K provides a survey of instruction architectures, including the
80x86, the IBM 360, the VAX, and many RISC architectures, including ARM,
MIPS, Power, and SPARC.

We describe Appendix L below.

Appendix L (available online) includes historical perspectives on the key ideas
presented in each of the chapters in this text. These historical perspective sections
allow us to trace the development of an idea through a series of machines or
describe significant projects. If you’re interested in examining the initial devel-
opment of an idea or machine or interested in further reading, references are pro-
vided at the end of each history. For this chapter, see Section L.2, The Early
Development of Computers, for a discussion on the early development of digital
computers and performance measurement methodologies.

As you read the historical material, you’ll soon come to realize that one of the
important benefits of the youth of computing, compared to many other engineer-
ing fields, is that many of the pioneers are still alive—we can learn the history by
simply asking them!

Case Study 1: Chip Fabrication Cost

Concepts illustrated by this case study

■ Fabrication Cost

■ Fabrication Yield

■ Defect Tolerance through Redundancy

There are many factors involved in the price of a computer chip. New, smaller
technology gives a boost in performance and a drop in required chip area. In the
smaller technology, one can either keep the small area or place more hardware on
the chip in order to get more functionality. In this case study, we explore how dif-
ferent design decisions involving fabrication technology, area, and redundancy
affect the cost of chips.

1.13 Historical Perspectives and References

Case Studies and Exercises by Diana Franklin

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

62 ■ Chapter One Fundamentals of Quantitative Design and Analysis

1.1 [10/10] <1.6> Figure 1.22 gives the relevant chip statistics that influence the cost
of several current chips. In the next few exercises, you will be exploring the
effect of different possible design decisions for the IBM Power5.

a. [10] <1.6> What is the yield for the IBM Power5?

b. [10] <1.6> Why does the IBM Power5 have a lower defect rate than the Niag-
ara and Opteron?

1.2 [20/20/20/20] <1.6> It costs $1 billion to build a new fabrication facility. You
will be selling a range of chips from that factory, and you need to decide how
much capacity to dedicate to each chip. Your Woods chip will be 150 mm2 and
will make a profit of $20 per defect-free chip. Your Markon chip will be 250
mm2 and will make a profit of $25 per defect-free chip. Your fabrication facility
will be identical to that for the Power5. Each wafer has a 300 mm diameter.

a. [20] <1.6> How much profit do you make on each wafer of Woods chip?

b. [20] <1.6> How much profit do you make on each wafer of Markon chip?

c. [20] <1.6> Which chip should you produce in this facility?

d. [20] <1.6> What is the profit on each new Power5 chip? If your demand is
50,000 Woods chips per month and 25,000 Markon chips per month, and
your facility can fabricate 150 wafers a month, how many wafers should you
make of each chip?

1.3 [20/20] <1.6> Your colleague at AMD suggests that, since the yield is so poor,
you might make chips more cheaply if you placed an extra core on the die and
only threw out chips on which both processors had failed. We will solve this
exercise by viewing the yield as a probability of no defects occurring in a certain
area given the defect rate. Calculate probabilities based on each Opteron core
separately (this may not be entirely accurate, since the yield equation is based on
empirical evidence rather than a mathematical calculation relating the probabili-
ties of finding errors in different portions of the chip).

a. [20] <1.6> What is the probability that a defect will occur on no more than
one of the two processor cores?

b. [20] <1.6> If the old chip cost $20 dollars per chip, what will the cost be of
the new chip, taking into account the new area and yield?

Chip
Die size
(mm2)

Estimated defect
rate (per cm2)

Manufacturing
size (nm)

Transistors
(millions)

IBM Power5 389 .30 130 276

Sun Niagara 380 .75 90 279

AMD Opteron 199 .75 90 233

Figure 1.22 Manufacturing cost factors for several modern processors.

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

Case Studies and Exercises by Diana Franklin ■ 63

Case Study 2: Power Consumption in Computer Systems

Concepts illustrated by this case study

■ Amdahl’s Law

■ Redundancy

■ MTTF

■ Power Consumption

Power consumption in modern systems is dependent on a variety of factors,
including the chip clock frequency, efficiency, disk drive speed, disk drive utili-
zation, and DRAM. The following exercises explore the impact on power that
different design decisions and use scenarios have.

1.4 [20/10/20] <1.5> Figure 1.23 presents the power consumption of several com-
puter system components. In this exercise, we will explore how the hard drive
affects power consumption for the system.

a. [20] <1.5> Assuming the maximum load for each component, and a power
supply efficiency of 80%, what wattage must the server’s power supply
deliver to a system with an Intel Pentium 4 chip, 2 GB 240-pin Kingston
DRAM, and one 7200 rpm hard drive?

b. [10] <1.5> How much power will the 7200 rpm disk drive consume if it is
idle roughly 60% of the time?

c. [20] <1.5> Given that the time to read data off a 7200 rpm disk drive will be
roughly 75% of a 5400 rpm disk, at what idle time of the 7200 rpm disk will
the power consumption be equal, on average, for the two disks?

1.5 [10/10/20] <1.5> One critical factor in powering a server farm is cooling. If heat
is not removed from the computer efficiently, the fans will blow hot air back onto
the computer, not cold air. We will look at how different design decisions affect
the necessary cooling, and thus the price, of a system. Use Figure 1.23 for your
power calculations.

Component
type Product Performance Power

Processor Sun Niagara 8-core 1.2 GHz 72–79 W peak

Intel Pentium 4 2 GHz 48.9–66 W

DRAM Kingston X64C3AD2 1 GB 184-pin 3.7 W

Kingston D2N3 1 GB 240-pin 2.3 W

Hard drive DiamondMax 16 5400 rpm 7.0 W read/seek, 2.9 W idle

DiamondMax 9 7200 rpm 7.9 W read/seek, 4.0 W idle

Figure 1.23 Power consumption of several computer components.

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

64 ■ Chapter One Fundamentals of Quantitative Design and Analysis

a. [10] <1.5> A cooling door for a rack costs $4000 and dissipates 14 KW (into
the room; additional cost is required to get it out of the room). How many
servers with an Intel Pentium 4 processor, 1 GB 240-pin DRAM, and a single
7200 rpm hard drive can you cool with one cooling door?

b. [10] <1.5> You are considering providing fault tolerance for your hard drive.
RAID 1 doubles the number of disks (see Chapter 6). Now how many sys-
tems can you place on a single rack with a single cooler?

c. [20] <1.5> Typical server farms can dissipate a maximum of 200 W per
square foot. Given that a server rack requires 11 square feet (including front
and back clearance), how many servers from part (a) can be placed on a sin-
gle rack, and how many cooling doors are required?

1.6 [Discussion] <1.8> Figure 1.24 gives a comparison of power and performance
for several benchmarks comparing two servers: Sun Fire T2000 (which uses
Niagara) and IBM x346 (using Intel Xeon processors). This information was
reported on a Sun Web site. There are two pieces of information reported: power
and speed on two benchmarks. For the results shown, the Sun Fire T2000 is
clearly superior. What other factors might be important and thus cause someone
to choose the IBM x346 if it were superior in those areas?

1.7 [20/20/20/20] <1.6, 1.9> Your company’s internal studies show that a single-core
system is sufficient for the demand on your processing power; however, you are
exploring whether you could save power by using two cores.

a. [20] <1.9> Assume your application is 80% parallelizable. By how much
could you decrease the frequency and get the same performance?

b. [20] <1.6> Assume that the voltage may be decreased linearly with the fre-
quency. Using the equation in Section 1.5, how much dynamic power would
the dual-core system require as compared to the single-core system?

c. [20] <1.6, 1.9> Now assume the voltage may not decrease below 25% of the
original voltage. This voltage is referred to as the voltage floor, and any volt-
age lower than that will lose the state. What percent of parallelization gives
you a voltage at the voltage floor?

d. [20] <1.6, 1.9> Using the equation in Section 1.5, how much dynamic power
would the dual-core system require as compared to the single-core system
when taking into account the voltage floor?

Sun Fire T2000 IBM x346

Power (watts) 298 438

SPECjbb (operations/sec) 63,378 39,985

Power (watts) 330 438

SPECWeb (composite) 14,001 4348

Figure 1.24 Sun power/performance comparison as selectively reported by Sun.

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

Case Studies and Exercises by Diana Franklin ■ 65

Exercises

1.8 [10/15/15/10/10] <1.4, 1.5> One challenge for architects is that the design cre-
ated today will require several years of implementation, verification, and testing
before appearing on the market. This means that the architect must project what
the technology will be like several years in advance. Sometimes, this is difficult
to do.

a. [10] <1.4> According to the trend in device scaling observed by Moore’s law,
the number of transistors on a chip in 2015 should be how many times the
number in 2005?

b. [15] <1.5> The increase in clock rates once mirrored this trend. Had clock
rates continued to climb at the same rate as in the 1990s, approximately how
fast would clock rates be in 2015?

c. [15] <1.5> At the current rate of increase, what are the clock rates now pro-
jected to be in 2015?

d. [10] <1.4> What has limited the rate of growth of the clock rate, and what are
architects doing with the extra transistors now to increase performance?

e. [10] <1.4> The rate of growth for DRAM capacity has also slowed down. For
20 years, DRAM capacity improved by 60% each year. That rate dropped to
40% each year and now improvement is 25 to 40% per year. If this trend con-
tinues, what will be the approximate rate of growth for DRAM capacity by
2020?

1.9 [10/10] <1.5> You are designing a system for a real-time application in which
specific deadlines must be met. Finishing the computation faster gains nothing.
You find that your system can execute the necessary code, in the worst case,
twice as fast as necessary.

a. [10] <1.5> How much energy do you save if you execute at the current speed
and turn off the system when the computation is complete?

b. [10] <1.5> How much energy do you save if you set the voltage and fre-
quency to be half as much?

1.10 [10/10/20/20] <1.5> Server farms such as Google and Yahoo! provide enough
compute capacity for the highest request rate of the day. Imagine that most of the
time these servers operate at only 60% capacity. Assume further that the power
does not scale linearly with the load; that is, when the servers are operating at
60% capacity, they consume 90% of maximum power. The servers could be
turned off, but they would take too long to restart in response to more load.
A new system has been proposed that allows for a quick restart but requires 20%
of the maximum power while in this “barely alive” state.

a. [10] <1.5> How much power savings would be achieved by turning off 60%
of the servers?

b. [10] <1.5> How much power savings would be achieved by placing 60% of
the servers in the “barely alive” state?

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

66 ■ Chapter One Fundamentals of Quantitative Design and Analysis

c. [20] <1.5> How much power savings would be achieved by reducing the
voltage by 20% and frequency by 40%?

d. [20] <1.5> How much power savings would be achieved by placing 30% of
the servers in the “barely alive” state and 30% off?

1.11 [10/10/20] <1.7> Availability is the most important consideration for designing
servers, followed closely by scalability and throughput.

a. [10] <1.7> We have a single processor with a failures in time (FIT) of 100.
What is the mean time to failure (MTTF) for this system?

b. [10] <1.7> If it takes 1 day to get the system running again, what is the avail-
ability of the system?

c. [20] <1.7> Imagine that the government, to cut costs, is going to build a
supercomputer out of inexpensive computers rather than expensive, reliable
computers. What is the MTTF for a system with 1000 processors? Assume
that if one fails, they all fail.

1.12 [20/20/20] <1.1, 1.2, 1.7> In a server farm such as that used by Amazon or eBay,
a single failure does not cause the entire system to crash. Instead, it will reduce
the number of requests that can be satisfied at any one time.

a. [20] <1.7> If a company has 10,000 computers, each with a MTTF of 35
days, and it experiences catastrophic failure only if 1/3 of the computers fail,
what is the MTTF for the system?

b. [20] <1.1, 1.7> If it costs an extra $1000, per computer, to double the MTTF,
would this be a good business decision? Show your work.

c. [20] <1.2> Figure 1.3 shows, on average, the cost of downtimes, assuming
that the cost is equal at all times of the year. For retailers, however, the Christ-
mas season is the most profitable (and therefore the most costly time to lose
sales). If a catalog sales center has twice as much traffic in the fourth quarter
as every other quarter, what is the average cost of downtime per hour during
the fourth quarter and the rest of the year?

1.13 [10/20/20] <1.9> Your company is trying to choose between purchasing the
Opteron or Itanium 2. You have analyzed your company’s applications, and 60%
of the time it will be running applications similar to wupwise, 20% of the time
applications similar to ammp, and 20% of the time applications similar to apsi.

a. [10] If you were choosing just based on overall SPEC performance, which
would you choose and why?

b. [20] What is the weighted average of execution time ratios for this mix of
applications for the Opteron and Itanium 2?

c. [20] What is the speedup of the Opteron over the Itanium 2?

1.14 [20/10/10/10/15] <1.9> In this exercise, assume that we are considering enhanc-
ing a machine by adding vector hardware to it. When a computation is run in vec-
tor mode on the vector hardware, it is 10 times faster than the normal mode of
execution. We call the percentage of time that could be spent using vector mode

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

Case Studies and Exercises by Diana Franklin ■ 67

the percentage of vectorization. Vectors are discussed in Chapter 4, but you don’t
need to know anything about how they work to answer this question!

a. [20] <1.9> Draw a graph that plots the speedup as a percentage of the compu-
tation performed in vector mode. Label the y-axis “Net speedup” and label
the x-axis “Percent vectorization.”

b. [10] <1.9> What percentage of vectorization is needed to achieve a speedup
of 2?

c. [10] <1.9> What percentage of the computation run time is spent in vector
mode if a speedup of 2 is achieved?

d. [10] <1.9> What percentage of vectorization is needed to achieve one-half
the maximum speedup attainable from using vector mode?

e. [15] <1.9> Suppose you have measured the percentage of vectorization of the
program to be 70%. The hardware design group estimates it can speed up the
vector hardware even more with significant additional investment. You won-
der whether the compiler crew could increase the percentage of vectorization,
instead. What percentage of vectorization would the compiler team need to
achieve in order to equal an addition 2× speedup in the vector unit (beyond
the initial 10×)?

1.15 [15/10] <1.9> Assume that we make an enhancement to a computer that
improves some mode of execution by a factor of 10. Enhanced mode is used 50%
of the time, measured as a percentage of the execution time when the enhanced
mode is in use. Recall that Amdahl’s law depends on the fraction of the original,
unenhanced execution time that could make use of enhanced mode. Thus, we
cannot directly use this 50% measurement to compute speedup with Amdahl’s
law.

a. [15] <1.9> What is the speedup we have obtained from fast mode?

b. [10] <1.9> What percentage of the original execution time has been con-
verted to fast mode?

1.16 [20/20/15] <1.9> When making changes to optimize part of a processor, it is
often the case that speeding up one type of instruction comes at the cost of slow-
ing down something else. For example, if we put in a complicated fast floating-
point unit, that takes space, and something might have to be moved farther away
from the middle to accommodate it, adding an extra cycle in delay to reach that
unit. The basic Amdahl’s law equation does not take into account this trade-off.

a. [20] <1.9> If the new fast floating-point unit speeds up floating-point opera-
tions by, on average, 2×, and floating-point operations take 20% of the origi-
nal program’s execution time, what is the overall speedup (ignoring the
penalty to any other instructions)?

b. [20] <1.9> Now assume that speeding up the floating-point unit slowed down
data cache accesses, resulting in a 1.5× slowdown (or 2/3 speedup). Data
cache accesses consume 10% of the execution time. What is the overall
speedup now?

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

68 ■ Chapter One Fundamentals of Quantitative Design and Analysis

c. [15] <1.9> After implementing the new floating-point operations, what
percentage of execution time is spent on floating-point operations? What per-
centage is spent on data cache accesses?

1.17 [10/10/20/20] <1.10> Your company has just bought a new Intel Core i5 dual-
core processor, and you have been tasked with optimizing your software for this
processor. You will run two applications on this dual core, but the resource
requirements are not equal. The first application requires 80% of the resources,
and the other only 20% of the resources. Assume that when you parallelize a por-
tion of the program, the speedup for that portion is 2.

a. [10] <1.10> Given that 40% of the first application is parallelizable, how
much speedup would you achieve with that application if run in isolation?

b. [10] <1.10> Given that 99% of the second application is parallelizable, how
much speedup would this application observe if run in isolation?

c. [20] <1.10> Given that 40% of the first application is parallelizable, how
much overall system speedup would you observe if you parallelized it?

d. [20] <1.10> Given that 99% of the second application is parallelizable, how
much overall system speedup would you observe if you parallelized it?

1.18 [10/20/20/20/25] <1.10> When parallelizing an application, the ideal speedup is
speeding up by the number of processors. This is limited by two things: percent-
age of the application that can be parallelized and the cost of communication.
Amdahl’s law takes into account the former but not the latter.

a. [10] <1.10> What is the speedup with N processors if 80% of the application
is parallelizable, ignoring the cost of communication?

b. [20] <1.10> What is the speedup with 8 processors if, for every processor
added, the communication overhead is 0.5% of the original execution time.

c. [20] <1.10> What is the speedup with 8 processors if, for every time the num-
ber of processors is doubled, the communication overhead is increased by
0.5% of the original execution time?

d. [20] <1.10> What is the speedup with N processors if, for every time the
number of processors is doubled, the communication overhead is increased
by 0.5% of the original execution time?

e. [25] <1.10> Write the general equation that solves this question: What is the
number of processors with the highest speedup in an application in which P%
of the original execution time is parallelizable, and, for every time the num-
ber of processors is doubled, the communication is increased by 0.5% of the
original execution time?

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

