Part I Java in the Database

At the beginning, there was SQL, a high-level query language for relational
databases. Then the need to extend SQL with procedural logic gave birth to
the concept of stored procedures and their corresponding languages, such as
Oracle’s PL/SQL. Stored procedures allow developing data logic that run in
the database, decoupled from business and computational logic, which runs
in the middle tier. However, the proprietary nature of stored procedure lan-
guages, leads to some concerns (or perceptions) of vendor lock-in and skills
shortage. Java is a response to these concerns. The ANSI SQLJ Part I speci-
fication' defines “SQL Routines and Types Using Java.” Although there are
differences in their specific implementations, most RDBMSs, including
Oracle, DB2, Sybase, and open source RDBMSs such as PostgreSQL and
to some extent MySQL, support Java as a language for stored procedures
and user-defined functions.

Chapter 1 discusses the rationale for stored procedures, the program-
ming model, and languages. Chapter 2 tells you everything you ever wanted
to know about the Oracle]VM, its architecture, memory management,
threading, class-sharing techniques, the native Java compiler (NCOMP),
and security management and contrasts it with the JDK VM. Chapter 3
delves into the details of developing, deploying, and invoking Java applica-
tions in the database, including an extensive section on PL/SQL wrappers
(also known as Call Spec) for publishing Java (i.e., make it known) to SQL,
and mapping SQL datatypes to/from Java/JDBC datatypes. Chapter 4
describes atypical Java applications, which implement new database func-
tionality using standard Java libraries. Finally, just for fun, in Chapter 5,
you will run basic JACL, Jython, Scheme, and Groovy scripts in the data-

See Oracle |DBC, Oracle SQLJ, and JPublisher in Part II; then Database Web Services in Part lll; and Putting Everything

Together in Part IV.

Part I: Java in the Database

base, as proof of the concept of supporting non-Java languages in the data-
base.” There is a growing adoption of Java in the database, among DBAs
and database developers, and after reading this book, you will probably
become an aficionado, if that is not already the case!

| must say that this proof of concept does not correspond to any Oracle product plan.

Stored Procedures as Database
Programming Model

Although stored procedures have been around for more than a decade now,
there still is a recurrent, almost ideological, debate on this programming
model. Although it takes position in favor of stored procedures, the intent
of this book is not to fuel this discussion but to elaborate on the benefits,
assuming that there are situations where stored procedures are the right
design choices. In this chapter, I will discuss the rationales for stored proce-
dures, the obstacles to their adoption, languages used for writing stored
procedures, and proprietary procedural languages such as PL/SQL versus
open standards languages such as Java.

1.1 Rationale for Stored Procedures

As database developers and database administrators (DBAs) already know,
stored procedures allow the exploitation of capabilities of relational data-
base management systems (RDBMSs) to their fullest extent. The motiva-
tions to use stored procedures range from simplifying database
programming to advanced data access to performance to centrally managed
data logic and to optimizing network traffic.

Simplifying Database Programming

Procedural programming (also known as modular programming), as the
name indicates, is based on the concepts of modules (also known as pack-
ages) and procedures (also known as functions, routines, subroutines, or
methods). Each module consists of one or more procedures. The resulting
code is simple and easier to read, debug, and maintain. Stored procedures
are a mix of procedural code and SQL. The runtime of stored procedures is
usually tightly integrated with the RDBMS but could also be loosely cou-
pled, as an external runtime. Procedural languages include vendors’™ exten-

I.1 Rationale for Stored Procedures

1.1.2

1.1.3

sions to SQL, such as PL/SQL, as well as BASIC/Visual BASIC, COBOL,
Pascal, C/C++, C#, Perl, and Java.

Centrally Managed Data Logic

By centralizing data logic, you can share it across all database projects, thereby
avoiding code duplication and allowing flexible application development.

Avoids Code Duplication

Stored procedures are written once, centralized, and not dispersed across
applications. When the procedure is updated, all consumer applications
will automatically pick up the new version at the next invocation.

Fosters Data Logic Sharing

Irrespective of their implementation language (e.g., proprietary, Java,
3GL), stored procedures are declared and known to the database catalog
through their SQL signature. In the Oracle case, this is achieved via a PL/
SQL wrapper known as Call Spec. Through this PL/SQL wrapper, SQL,
PL/SQL, Java in the database, thin clients (Web), rich clients (desktop),
stand-alone Java, and middle-tier components' access the same, centrally
managed data logic. For example, a stored procedure can be used to send a
notification email when a new order is placed or to invalidate the middle-
tier cache to notify data change (see “Poor Man’s Cache Invalidation”
example in Chapter 4).

Implementation Transparency

Interfaces allow effective modularization/encapsulation and shield consumers
from implementation details, allowing multiple implementations. By decou-
pling the call interface (i.e., Call Spec in Oracle’s vocabulary) from its actual
implementation, the stored procedure may change over time from being writ-
ten in PL/SQL to Java or the opposite, transparently to the requesters.

Performance: Run JDBC Applications Faster in
the Database

Performance is one of the main motivations for using stored procedures. A
few years ago, Oracle used PL/SQL stored procedures to optimize the per-
formance of a benchmark version of the infamous J2EE Blueprints

Mastering Enterprise JavaBeans,2nd edition, by Ed Roman, Scott W. Ambler; and Tyler Jewell (New York: John Wiley &

Sons, 2002).

I.1 Rationale for Stored Procedures 5

“PetStore™ application. This optimization prompted a heated debate in the
Java/]2EE community. On the heels of this debate, Microsoft implemented
and published the results of a .NET variant of the same benchmark,
using—guess what?>—stored procedures! The main criticism® was the lack
of portability of PL/SQL or Transact SQL stored procedures across
RDBMSs. Well, this is precisely the raison d’étre of Java stored procedures.

The conclusion to derive from these experiences, as database program-
mers already know, is that stored procedures are the right design choice for
efficient database programming. Stored procedures inherently incur mini-
mal data movement, compared with a set of individual SQL statements that
ship data outside the database. By processing data within the database (sort-
ing, filtering) and returning just the results, stored procedures reduce net-
work traffic and data movement. To cut to the chase, let's compare the
performance of a Java application used as a stand-alone Java database con-
nectivity (JDBC) application deployed on a Java development kit (JDK)
virtual machine (VM) versus the same code deployed as a Java stored proce-
dure running in the database (this is, by the way, an illustration of the claim
that you can reuse existing Java/JDBC applications, with minor changes, in
the database). The following example will already give you an overview of
the few steps involved in creating, compiling, publishing, and executing
Java in the database.

Setup

Configuration:

A Pentium 4 M 1.80-GHz laptop, with 1 GB of RAM using Windows
XP Professional Version 2002, Oracle Database 10¢ Release 1, and the
associated JDBC drivers.

Create a table with a Varchar2, BLOB, and CLOB columns, using the
following script (in a SQL*Plus session):

SQL> connect scott/tiger;
SQL> drop table basic lob table;
SQL> create table basic lob table (x varchar2 (30), b blob, c clob);

L
2. http://www.oracle.com/technology/tech/java/oc4j/pdf/9ias_net_bench.pdf
3. http://java.sun.com/blueprints/qanda/fag.html#stored_procedures

| Chapter |

I.1 Rationale for Stored Procedures

The Java Aplication

1

Listing 1. TrimLob.java

/*

* This sample shows basic BLOB/CLOB operations

* It drops, creates, and populates table basic_lob table
* with columns of blob, clob data types in the database
* Then fetches the rows and trim both LOB and CLOB

*/

// You need to import the java.sql package to use JDBC

import java.sql.*;

/*

* You need to import the oracle.sqgl package to use
* oracle.sql.BLOB

*/

import oracle.sql.¥*;

public class TrimLob
{
public static void main (String args []) throws SQLException {
Connection conn;
/*
* Where is your code running: in the database or outside?
*/
if (System.getProperty("oracle.]jserver.version") != null)
{
/*
* You are in the database, already connected, use the default
* connection
*/
conn = DriverManager.getConnection("jdbc:default:connection:");
}
else
{
/*
* You are not in the database, you need to connect to
* the database
*/

I.1

Rationale for Stored Procedures 7

DriverManager.registerDriver (new oracle.jdbc.OracleDriver());

conn =
DriverManager.getConnection("jdbc:oracle:thin:", "scott",
"tiger");
}
long t0,t1;
/*

* Turn auto commit off

* (Required when using SELECT FOR UPDATE)

*/

conn.setAutoCommit (false);

t0=System.currentTimeMillis();

// Create a Statement

Statement stmt = conn.createStatement ();

// Make sure the table is empty

stmt.execute("delete from basic lob table");// sure we could use
truncate

stmt.execute("commit");

// Populate the table

stmt.execute ("insert into basic lob table values ('first', " +
"'010101010101010101010101010101", " +
"'one.two.three.four.five.six.seven')");

stmt.execute ("insert into basic lob table values ('second', " +
"'02", " +
"'two.three.four.five.six.seven.eight.nine.ten')");

/*
* Retreive LOBs and update contents (trim); this can be done by
doing
* "select ... for update".
*/
ResultSet rset = stmt.executeQuery
("select * from basic lob table for update");

while (rset.next ())

{
// Get the lobs

BLOB blob = (BLOB) rset.getObject (2);
CLOB clob = (CLOB) rset.getObject (3);

// Show the original lengths of LOBs

| Chapter |

I.1 Rationale for Stored Procedures

System.out.println ("Show the original lob length");
System.out.println ("blob.length()="+blob.length());
System.out.println ("clob.length()="+clob.length());

// Truncate the lobs

System.out.println ("Truncate LOBs to legnth = 6");
blob.truncate (6);

clob.truncate (6);

// Show the lob length after truncate()

System.out.println ("Show the lob length after truncate()");
System.out.println ("blob.length()="+blob.length());
System.out.println ("clob.length()="+clob.length());

// Close the ResultSet and Commit changes
rset.close ();
stmt.execute("commit");

// Close the Statement
stmt.close ();

tl=System.currentTimeMillis();

System.out.println ("====> Duration: "+(int)(tl-t0)+
"Milliseconds");

// Close the connection

conn.close ();

Running the Java Application as a Stand-alone JDBC Application

Stand-alone JDBC applications run on JDK VM, against the database. For
my test, the database, the JDBC driver, and application, all run on the same
machine. The following steps compile the Java class and execute it:

javac TrimLob.java
java —classpath $CLASSPATH% TrimLob

Running the Java Application as a Java Stored Procedure

TrimLobSp.sql (contains Java source and SQL commands)

Rationale for Stored Procedures 9

connect scott/tiger;
create or replace java source named TrimLob as

rem
rem -> Insert here the above Trimlob.java here
rem

show errors;
alter java source TrimLob compile;
show errors;

create or replace procedure TrimLobSp as
language java name 'TrimLob.main(java.lang.String[])';

/

show errors;
set serveroutput on
call dbms java.set output(50000);

call TrimLobSp();

Table 1.1 contrasts the performance of 10 invocations of the same Java
code as stand-alone JDBC, and as Java stored procedure, on the same lap-
top, using exactly the same configuration (i.e., Oracle Database 10g Release

1 and its embedded Oracle]VM).

Although we cannot draw a universal conclusion, because of the elimi-
nation of network roundtrips and because it runs within the same address
space as SQL, this JDBC application runs four to five times faster in the
database than outside it. This example proves that, when appropriate, you
can move Java/JDBC applications to the database and run them faster.

| Chapter |

I.1 Rationale for Stored Procedures

1

Table 1.

i1.1.4

1.1.5

Performance Contrasts

Run# Stand-alone JDBC Java Stored Procedure
Ist 570 ms 121 ms
2nd 241 ms 61 ms
3rd 240 ms 60 ms
4th 250 ms 50 ms
5th 230 ms 50 ms
6th 281 ms 50 ms
7th 280 ms 50 ms
8th 241 ms 50 ms
9th 250 ms 50 ms
10th 251 ms 50 ms
Encapsulation

Encapsulation is an object-oriented design principle that lets you structure
an application into modules that hide data structures from outside view and
also protect it from unauthorized access. Stored procedures allow building
specialized modules, which can be tuned by domain specialists and DBAs,
shielding consumers from the arcane data structure and SQL program-
ming. Encapsulation also hides differences between RDBMSs by presenting
the same call interface over different enterprise information systems (see
“TECSIS System Use” case in Part VI).

Security: Advanced Data Access Control

Database-related applications that have explicit knowledge of database
schema login and password may compromise the security of your system
and may break upon schema change. You can enforce security as part of
your design by using JDBC data sources that remove and defer the actual
database and login information to deployment time, and, in addition,
implement security policies in stored procedures (validate login informa-
tion on each procedure call) and only allow users/apps to call these stored
procedures. You can control database access use through customized,
advanced, sophisticated data access logic that does CRUD (i.e., Create,
Retrieve, Update, Delete) operations on tables while denying users direct

1.2 Obstacles to the Adoption of Stored Procedures Il

1.1.6

1.1.7

1.1.8

access to these tables. Database triggers are traditionally used to enforce ref-
erential integrity and constraints, thereby making sure that only valid data
enters the database; stored procedures that implement more complex con-
straints and additional operational security restrictions (e.g., forbid salary
table update during weekends!) can be implemented as triggers, on top of
the built-in security mechanisms offered by the RDBMS engine.

Resource Optimization

All database clients accessing the same database schema run the same in-
memory copy of the procedure, thereby reducing overall memory alloca-
tion. Also, as demoed previously, depending on the level of integration,
stored procedures can run within the same address space as the SQL engine,
incurring minimal call overhead and optimizing memory utilization. In
Chapter 2, I will describe in detail the internal mechanisms of the Java VM
in the Oracle database.

Low-Cost Deployment

Independent software vendors (ISVs) and integrators already know that the
ability to bundle their products on top of the database considerably simpli-
fies installation, platform support, and product distribution. Java integra-
tion with the database eliminates the need for an external JDK/JRE and the
headache of platform compatibility; furthermore, it works the same way on
every platform on which the database runs.

Fully Utilize Database Capabilities

Part VI of this book describes how Oracle interMedia, TECSIS Systems,
Oracle Text, British Columbia Corporate Online, and DBPrism CMS case
studies use the database to its full extent.

1.2 Obstacles to the Adoption of Stored Procedures

The following concerns are usually invoked as showstoppers for adopting
stored procedures: portability across database vendors, scalability, maintain-
ability, and debugability. As discussed in the following text, some of these
concerns are valid, but others are misperceptions.

| Chapter |

1.2 Obstacles to the Adoption of Stored Procedures

1.2.1

1.2.2

1.2.3

Lack of Portability across RDBMS Vendors

In corporate I'T environments that use more than one RDBMS, DBAs and
database developers have to learn different procedural languages, such as
PL/SQL, T-SQL, SQL/PL, and so on. Large IT organizations can afford to
dedicate specific resources to each RDBMS for handling tasks ranging from
managing databases to writing stored procedures. However, most organiza-
tions are looking for the flexibility of redeploying their staff of DBAs and
developers according to their business priorities. Using Java across tiers and
an RDBMS enables the portability of skills. Also, in the unlikely situation
where an organization decides to move to a different RDBMS, it will have
to migrate not only the schema and data but also the set of stored proce-
dures developed over the years. Using Java leaves the door open for such a
move because the Java sources and classes can be migrated smoothly, with
minimal changes, losses, and cost.

Scalability

In typical application deployments, the clients (i.e., Web client, rich client,
desktop) run against middle-tier nodes, which in turn funnel threads corre-
sponding to clients against a pool of fewer database connections, typically
an order of magnitude less than the number of concurrent clients/threads.
Still, database scalability is crucial to middle-tier scalability. The session-
based architecture of the Oracle database makes it scale linearly on symmet-
ric multiprocessing (SMP) using a single RDBMS instance and quasi-lin-
early on clusters and grid nodes using multiple RDBM instances (i.e., Real
Application Clusters [RAC]). To conclude, PL/SQL and Java stored proce-
dures scale very well as far as the platform permits. In other words, the scal-
ability of stored procedures is a by-product of the architecture of the target
RDBMS and not a limitation of the stored procedure programming model
per se.

Maintenance and Resilience to Schema Change

Upon schema change (i.e., when changes to table/column names, locations,
or references occur), the stored procedures need to be updated to adapt to
the new schema however, all of the applications built on top of those stored
procedures remain unchanged and still return the exact result sets from the
new database design. Shielding your applications (i.e., business logic) from
the inevitable schema change by encapsulating the database schema within
centralized stored procedures and validation logic is a small price to pay

1.3 Languages for Stored Procedures I3

1.2.4

1.2.5

compared with the benefits of maintenance. Stored procedures act as inter-
faces between the data schema and the business logic layer, shielding each
layer from changes occurring in the others. Encapsulation significantly
reduces the ripple effect.

Hard to Debug

Most RDBMSs support stored procedures development and debugging
through an integrated development environment (IDE) using either propri-
etary mechanisms such as the former Oracle’s java.debugAgent, which has
now fallen into obsolescence, or standard mechanisms such as the Java
Debug Wire Protocol (JDWP). Oracle JDeveloper integrates JDWP and
allows simultaneous debugging of PL/SQL and Java stored procedures in the
same session. Third-party IDE, which support JDWE would also allow
debugging PL/SQL and/or Java directly in the database. Alternatively, and
this is what most Java developers currently do, you debug your Java code first
outside the database (as a JDBC application), and then deploy it in the data-
base. The bottom line is that debugging stored procedures is a bit less
straightforward than debugging middle-tier applications or presentation logic
using your favorite development tool; hence, there is this legitimate concern.

Weak Support for Complex Types

This concern is rather a question of perception. As shown in Chapter 3,
stored procedures can pass complex database types, such as user-defined
types (ADT), SQL object types, nested tables, VARRAY, and multilevel col-
lections between the client program and the database. The standard SQL-
Data interface allows custom mapping of user-defined types (ADT) in
JDBC applications and stored procedures; furthermore, the Oracle JDBC
extensions allow exchanging Oracle Object types between SQL (RDBMS)
and JDBC applications (i.e., Java stored procedures).

1.3 Languages for Stored Procedures

1.3.1

This section discusses the pros and cons of using proprietary languages,
Java, and the emerging category of .NET languages in the database.

Proprietary Languages

The following discussion applies to most proprietary languages for
stored procedures;* however, I focus on the Oracle PL/SQL, which is

| Chapter |

1.3 Languages for Stored Procedures

B

1.3.2

widely used and regarded as one of the best vendor-supplied languages
for stored procedures.

Seamless Integration with SQL

Proprietary languages for stored procedures such as Oracle’s PL/SQL are an
extension to SQL and as such are well integrated into SQL with little or no
data type conversion and optimized for faster SQL data access. PL/SQL is
well suited for wrapping intensive SQL operations with moderately com-
plex procedural logic.

IDE Support

Those languages benefit from a strong vendor-supplied development envi-
ronment and also third-party IDE. As an example, the Oracle JDeveloper,
as well as third-party IDE, provides a nice environment for writing, debug-
ging, and maintaining PL/SQL programs.

Portability

Cross-platform portability of proprietary language such as PL/SQL is
inherited from the portability of the RDBMS. As an example, compiled
PL/SQL packages can be moved to different platforms where the Oracle
database runs—from Solaris to Linux or Windows or vice versa—without
recompilation. Cross-vendor portability (e.g., run one vendor’s language in
another vendor’s database) is technically possible (see section 1.3.3) but not
yet a sure thing.

Java for Stored Procedures

Complete Programming Language

The Java language is by design an object-oriented programming language
that supports many programming models, including simple models such as
JavaBean, POJO, JDBC applications, Java stored procedures, and more
complex J2EE programming models such as Servlets, JavaServer Pages, and
Enterprise Java Beans.

Secure Language

The Java language has built-in security mechanisms, such as the lack of
pointer arithmetic, which prevents it from computing offending memory
offset; the Garbage Collector, which reduces the risk of memory corruption

Not including languages supported by Microsoft's Common Language Runtime, such as Visual BASIC and C#.

1.3 Languages for Stored Procedures I5

by cleaning up dead objects and reclaiming unused memory; the type
safety, described next; the byte-code verifier described later in this chapter;
and Java 2 security for accessing system resources or remote systems

(described in Chapter 2).

Type Safety

Java’s strong typing’ and static typing (i.e., compile time type checking)
make the language less vulnerable to viruses and buffer overflow security
holes. The creators of Java carefully designed the language and byte code
formats to facilitate static type checking. The byte code verifier effectively
checks static types at compile time, giving Java developers the opportunity
to fix any type errors before deployment, resulting in a type safe program
that runs efficiently.

Robustness

Java requires catching exceptions that can be thrown by methods in any
class, thereby making Java stored procedures more robust. The automatic
memory Garbage Collector also enforces robustness because it reduces the
likelihood of memory corruption.

Productivity: Rapid Design Features

The Java language comes with a set of built-in rapid application design
(RAD) features, such as the following:

» Built-in automatic bounds checking on arrays
» Built-in network access classes (java.net, java.rmi)

» Automatic Garbage Collector, which eliminates whole classes of
memory management issues

» Standard data types and application programming interfaces (APIs)
contain many useful and ready-to-use classes (or easy-to-implement
interfaces)

Using Java as a Procedural Language

Like most RDBMSs, the Oracle database promotes a simplified program-
ming model that can be summarized as “no threading within applications

code.” Although Oracle]VM lets you deploy a threaded Java code, its

L
5.

Strong typing refers to the requirement that the type of each field and variable and the return type of each method be
explicitly declared.

| Chapter |

1.3 Languages for Stored Procedures

scheduler is nonpreemptive; in other words, the active thread will run until
it is no longer runable. The running Java application in a session is practi-
cally the only code running in the embedded Java VM. Java stored proce-
dures also share the same simplicity with J2EE programming models: no
threading within components code; the container itself is threaded, but the
components (i.e., EJB, Servlet, JSP) are nonthreaded. Furthermore, Java
experts discourage threading and recommend having only a very few for
application robustness and portability [Bloch01]. This simplified program-
ming model also simplifies memory management by removing the need to
place memory allocation locks during garbage collection (GC).

Standard Specifications for Java Stored Procedures

The following American National Standards Institute (ANSI) specifications
define SQLJ, Java stored procedures, and SQLJ Object types:

n SQLJ Part 0. “Database Language SQL—Part 10: Object Language
Bindings (SQL/OLB),” ANSI X3.135.10-1998. Specifications for
embedding SQL statements in Java methods. Similar to the tradi-
tional SQL facilities for embedded SQL in COBOL and C and
other languages. The Java classes containing embedded SQL state-

ments are precompiled to pure Java classes with JDBC calls. Also
known as SQL.

w SQLJ Part 1. “SQL Routines Using the Java Programming Lan-
guage,” ANSI NCITS N331.1. Specifications for installing Java
classes in a SQL system and for invoking Java static methods as SQL
stored procedures and functions. Also known as Java stored proce-
dures.

w SQLJ Parr 2. “SQL Types Using the Java Programming Language,”
ANSI NCITS N331.2. Also known as SQLJ Object Types.

POJO-like Programming Model
What are POJOs? If you Google “Java POJO,” you'll get the following

definition.

POJO = “Plain Old Java Object.” Term coined by Martin Fowler,
Rebecca Parsons, and Josh MacKenzie to denote a normal Java object
that is not a JavaBean, an EntityBean, a SessionBean, etc., and does not

1.3 Languages for Stored Procedures 17

serve any other special role or implement any special interfaces of any of
the Java frameworks (EJB, JDBC, . .).

Any Java object can run within an EJB container, but many people
don’t know that or forget it. Fowler et al. invented the acronym POJO so
that such objects would have a “fancy name,” thereby convincing people
that they were worthy of use.

POJOs are useful for creating a Domain Model. In contrast, the vari-
ous types of beans and other special Java objects often have constraints
that make it difficult to use them directly to model a domain.

Stored procedures use explicit SQL statements through JDBC and
aren’t, therefore, pure POJOs; however, they have in common the simplic-
ity of their programming models. Unlike when using Enterprise JavaBeans
(EJBs), you don't need to be a rocket scientist to get a Java stored procedure
right. As a matter of fact, the next EJB specification (EJB 3.0) is looking at
simplifying the EJB model by integrating the POJO programming model.

Stored Procedures and O/R Mapping

O/R mapping generally refers to transparent mapping of Java objects to a
relational database, which is achieved through several mechanisms (or pro-
gramming models), including EJB CMP, POJO, and Java Data Object
(JDO).® Stored procedures may be used by O/R mapping frameworks to
perform a custom mapping of a specific object but are by no means a sub-
stitute. Stored procedures belong to explicit persistence mechanisms (i.e.,
SQL intrusive), whereas O/R mapping frameworks address transparent per-
sistence (i.e., non-SQL intrusive).

Cross-Database Portability

Most RDBMSs (except SQL Server) support Java, either through a loosely
coupled external JDK-based runtime or through a tight integration of the
Java runtime with the database kernel (i.e., OracleJ]VM). Database develop-
ers who choose Java in the database motivate this choice, among other
things, by its cross-vendor portability. Although Java stored procedures
implementations differ from one vendor to another, Java is by far the most
portable language for stored procedures. This book offers in-depth coverage
of Oracle’s implementation.

.
6. http://java.sun.com/products/jdo/.

| Chapter |

1.3 Languages for Stored Procedures

1.3.3

Huge Class Library and Tools: Reduced Development Time and Costs

As we all know, the ability to reuse existing libraries results in quicker and
lower-cost applications development. The availability of a rich and very
large set of standard libraries as well as third-party class libraries is one of
the biggest benefits that Java brings to database developers. The smart and
lazy developers will extend their databases with new capabilities (see Chap-
ter 4) in no time, writing only a few lines of code and scripts to adapt and
glue Java with the database.

Skills Reuse

Because Java is one of the most dominant and widespread programming
languages, it is likely that Java programmers already exist within your
organization; furthermore, most new hires graduating from college have
Java programming skills. The ability to use the same language across the
middle tier (business/application logic) and the database tier (data logic)
bolsters skills reuse, which in turn simplifies resource allocation, thereby
reducing project costs.

Java Database Connectivity and SQL Data Access

The Oracle]VM embeds a special JDBC driver and a SQL]J runtime for
direct SQL data access. This enables redeploying J2SE/JDBC/SQL]J appli-

cations in the database (see section 1.1.3).

Starting with Java

An introduction to Java is beyond the scope of this book; however, here are
some pointers to start with Java:

» Online Java Tutorial: http://java.sun.com/docs/books/tutorial

» The comp.langjava FAQ List: http://www.ibiblio.org/javafaq/jav-
afaq.html

» The Java Developer Almanac, by Patrick Chan and Lan-Ahn Dang
(Reading, MA: Addison Wesley)

.NET Languages

SQL Server 2005 introduces the Common Language Runtime (CLR) on
top of the .NET framework, for running stored procedures written in C#,
VB.NET, J#, and other languages. CLR can be viewed as a generic virtual
machine, which supports multiple languages in the database. The most
interesting aspect of CLR is its support by the latest releases of DB2 and

1.4 PL/SQL or Java

Oracle; as a result, and similarly to Java, CLR would in theory allow the
portability of code not only across the Microsoft middle tier and database
tier,” but also across RDBMSs.® Java may no longer be the only portable
language for stored procedures across RDBMSs but remains by far the most
portable,9 the most widely used, and the one that offers the largest reusable
set of code and class libraries. Because the version of CLR might vary across
vendors, it is not yet clear what will be the uptake of C#, J#, VB.NET
beyond SQL Server 2005.

1.4 PL/SQL or Java

This is the $72,526 techno-political question being asked all the time:
“When should we use PLISQL and when should we use Java for stored proce-
dures?” The short but correct answer is, “It depends!” It indeed depends on
your goals; your requirements, such as the profile of the code being exe-
cuted in the database (i.e., data access intensive versus computation inten-
sive); the available skills within your organization; and whether you might,
in the future, need to migrate the code in question from the database to
the middle tier or vice versa. According to a survey conducted by Evans
Data Corporation among database developers (across all RDBMSs), 22
percent declare using PL/SQL (which must be the majority of Oracle data-
base customers) while 41 percent to 46 percent declare using Java, across
all RDBMSs that support it. These figures are not exclusive; the person
who declared using Java also uses PL/SQL when dealing with the Oracle
Database. As you have already figured out, there is no straight answer;
however, here are my own rules of thumb for choosing between Java and
PL/SQL, but each DBA, database developer, and data architect has his or

her own rules or motivations for choosing one approach versus another:

m Prefer PL/SQL when (i) your data logic (i.e., data processing or data
validation logic) is SQL intensive, or (ii) you already have the skills.
Modeled after the ADA programming language, PL/SQL is an
advanced procedural language. Its seamless integration with SQL and
the Oracle database allows faster SQL data access with little or no
type conversion. There is a large community with Oracle-supplied
packages'® and third-party libraries.

[

7. Enabled by the integration of NET with the SQL Server 2005 RDBMS.

8. IBM DB2 Release 8.2 and Oracle Database |0g Release 2 support CLR |.x.
9. DB2, Oracle, Sybase, PortGresSQL, and MySQL.

|

0. http://www.oracle.com/technology/tech/pl_sgl/index.html.

| Chapter |

1.4 PL/SQL or Java

m Prefer Java in the database when (i) your data logic has moderate SQL
data access requirements (as opposed to SQL intensive) and moderate
computational requirements (as opposed to compute intensive), or (ii) you
already have the skills (Java skills are more pervasive, most college gradu-
ates know Java), or (iii) you need to accomplish things you cannot do in
PL/ISQL, such as interaction with ERP systems, RMI servers, Java/J2EE,
and Web services, or (iv) you want to leave the door open for partitioning
your application between the middle tier and the database tier. There is a
large Java community with tons of class libraries (standard and third
party) that you can reuse. When your data logic becomes too com-
plex, you just migrate it to the middle tier.

m Furthermore, you should consider Java/J2EE in the middle tier
(stand-alone JDBC, JavaBeans, POJOs, E]Bs, Servlets/Java Server-
Pages, and so on) when (i) your business logic is complex or compute
intensive with little to moderate direct SQL access, or (ii) you are imple-
menting a middle-tier-driven presentation logic, or (iii) you require
transparent Java persistence (i.e., POJOS, CMP EJB) as opposed to SQL
intrusive persistence, or (iv) you require container-managed infrastruc-
ture services (transaction, security), or (v) many other reasons not speci-
fied here. 1f your business logic becomes SQL data access bound, you
may migrate it into the database tier. JavaBeans, POJOs, and J2EE
design models may orthogonally use stored procedures (PL/SQL
and/or Java) directly through JDBC or indirectly through O/R map-
ping frameworks.

If performance is the key requirement, since Java in the database is sand-
wiched between PL/SQL (SQL intensive) and Java/J2EE in the middle tier
(compute intensive), when is it competitive? As illustrated in section 1.1.3,
when your code combines Java and SQL, Java in the database wins, since it
incurs less roundtrips (minimal network overhead) and less data traffic.

[A poster on Slashdot.org] “While I agree thar I would tend to abstract
all SQL to some PL/SQL call that ‘DBAs who get it have control over,
there are LOTS of things that Java can do that are VERY handy, when
viewed at in the application architecture point of view and not just in a

SQL context.”

1.4 PL/SQL or Java

21

1.4.1

PL/SQL and jJava!

The pragmatic database developers use both Java and PL/SQL, because
these complement each other very well to glue together the rich set of data-
base features. Now that we have set the stage, in the next chapters, I'll walk
you through the entrails of the Java runtime in the Oracle database, how to
reuse standard libraries, how to deploy your own Java classes, and examples
of real-life cases.

| Chapter |

